
An edited version of this paper was published by AGU. Copyright (2020) American Geophysical Union.
Martinsen, K. T., Kragh, T., & Sand‐Jensen, K. (2020). Carbon dioxide partial pressure and emission throughout

the Scandinavian stream network. Global Biogeochemical Cycles, 34, e2020GB006703.
https://doi.org/10.1029/2020GB006703

Carbon dioxide partial pressure and emission throughout the Scandinavian stream 
network 

Kenneth Thorø Martinsen1, Theis Kragh2 and Kaj Sand-Jensen1 

1Freshwater Biological Laboratory, Biological Institute, University of Copenhagen, 
Universitetsparken 4, 3rd. floor, DK-2100 Copenhagen Ø, Denmark
2Biological Institute, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, 
Denmark

Corresponding author: Kenneth Thorø Martinsen (kenneth2810@gmail.com) 

Key Points:

 Carbon dioxide partial pressure in streams can be predicted from catchment 
characteristics

 Prediction of carbon dioxide partial pressure can be improved using machine learning

 Prediction of carbon dioxide partial pressure, followed by estimation of fluxes, can be 
performed across large stream networks

1/23

mailto:email@address.edu)


An edited version of this paper was published by AGU. Copyright (2020) American Geophysical Union.
Martinsen, K. T., Kragh, T., & Sand‐Jensen, K. (2020). Carbon dioxide partial pressure and emission throughout

the Scandinavian stream network. Global Biogeochemical Cycles, 34, e2020GB006703.
https://doi.org/10.1029/2020GB006703

Abstract

Stream networks transport and emit substantial volumes of carbon dioxide (CO2) into the 
atmosphere. We gathered open monitoring data from streams in three Scandinavian countries 
and estimated CO2 partial pressure (pCO2) at 2298 sites. Most of the sites (87 %) were 
supersaturated when averaged across the year with an overall mean pCO2 of 1464 μatm (range: 
17–15646). Using remote sensing data, we modeled a realistic stream network including streams 
above ~2.5 m wide and calculated catchment averages of multiple variables associated with geo-
morphometry, stream network proximity and land cover. We compared the ability of eight 
machine learning models to predict pCO2 and found that the Random Forest model achieved the 
highest accuracy, with a root-mean-square error of 0.22 (log10(pCO2)) and R2 of 0.66. Mean 
catchment elevation, slope and permanent water cover were the most important predictor 
variables. We used the predictive model to create a high-resolution (25 m resolution) map with 
predicted stream pCO2 throughout the 268.807 km stream network in Denmark, Sweden and 
Finland. Predicted pCO2 averaged 1134 μatm (range: 154–8174). We used surface runoff, air 
temperature and stream channel slope to estimate gas transfer velocity and CO2 flux throughout 
the network. Mean stream CO2 fluxes ranged from 1.0 and 1.2 in Sweden and Finland 
respectively 3 to 3.2 g C m-2 d-1 in Denmark. Better-performing models improve our ability to 
predict pCO2 in stream networks and reduce the uncertainty of upscaling estimates of carbon 
emissions from inland waters to countries and continents.

1 Introduction

Inland standing and running waters are hotspots of greenhouse gas emissions on both regional and global scales 
(Battin et al., 2009; Raymond et al., 2013). Knowledge of the magnitude of these emissions has grown in recent 
years, as efforts to reduce the uncertainty of the global freshwater carbon emissions have increased (Drake et al., 
2018). In terms of both carbon dioxide (CO2) emissions and lateral transport, headwaters, streams and rivers 
(simplified to ‘streams’ herein) play a dominant role (Butman et al., 2015; Wallin et al., 2013); relative to the area 
they cover, CO2 emissions from streams are disproportionately high (Butman & Raymond, 2011; Marx et al., 2017). 
Improving the predictive accuracy of CO2 partial pressure (pCO2 ) in streams is important for constraining the role of
stream CO2  flux (FCO2) in large scale greenhouse gas emission budgets.

The earlier view of streams acting only as “pipes” or closed transport ways of carbon from the terrestrial 
environment to coastal areas has long been outdated (Cole et al., 2007). Instead, streams are understood not only to 
transport carbon, but also to emit it into the atmosphere. Processing of allochthonous organic carbon in the aquatic 
environment and input of terrestrially derived CO2 result in pronounced supersaturation (Humborg et al., 2010). This
supersaturation results in diffusive transport of CO2 from water to the atmosphere. The rate of this transport (the 
flux) depends on the gas transfer velocity (k) and the difference between the actual and saturation partial pressure 
(concentration being the product of Henry’s law constant, Hp, and the partial pressure):

Eq. 1: FCO 2
=k ⋅H p ⋅ ( pC O2− pC O2 sat )

k depends on surface water turbulence and can be estimated from physical characteristics such as stream hydraulics 
(Zappa et al., 2007). Recent large-scale studies have applied empirical relationships, scaling k by water velocity and 
stream slope (Raymond et al., 2012). Thus, FCO2 can be calculated with knowledge of pCO2 in the water, water 
temperature and estimates of k from water velocity and stream slope.

Streams connect the terrestrial environment to the ocean. Water is received along the stream network from a 
catchment via groundwater, soil water and surface water discharge. From the moment carbon enters a stream, it may
be transformed and emitted to the atmosphere as CO2 or transported further downstream. Both inorganic and organic
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carbon may originate from aquatic metabolic processes (Sand-Jensen et al., 2007), photodegradation (Cory et al., 
2015) and hydrological inputs from the catchment (Humborg et al., 2010). CO2 derived from soil respiration 
contributes markedly to stream pCO2 (J. B. Jones & Mulholland, 1998a). This may be especially pronounced in 
headwaters, where 50–100-fold supersaturation has been documented (Johnson et al., 2008), and similarly high 
pCO2 values have been observed in agricultural lowlands (Sand-Jensen & Staehr, 2012). Depending on the 
catchment geology, much of CO2 in the soil is converted to bicarbonate ions by chemical weathering of carbonates 
and aluminum-silicate minerals (Berner & Berner, 2012; Marx et al., 2017). Catchment geo-morphometry, land 
cover and stream network proximity could provide useful proxies for hydrological carbon loading and should 
improve the predictability of stream pCO2.

Estimates of FCO2 on larger scales are often based on averages of CO2 concentration and k for different stream order 
categories, thus ignoring spatial variability, which is likely to be influential. However, recent studies (Horgby et al., 
2019; Rocher-Ros et al., 2019) show the importance of catchment scale processes on pCO2 in stream networks. It is 
thus attractive to develop methods that enable easier incorporation of such processes into large-scale budgets to 
improve their accuracy. The use of data-driven modeling focused on prediction and leveraging geographical 
information systems (GIS) for the extraction of relevant drivers could provide such a framework. Multiple studies 
have identified average catchment slope as an important predictor of pCO2 levels (Hutchins et al., 2019; Lauerwald 
et al., 2015; Smits et al., 2017) which, along with climate variables such as temperature and precipitation, influence 
soil respiration, water status and hydrological connectivity between catchment and stream. Furthermore, land use 
and land cover, which can be obtained by remote sensing, could also prove to be valuable. The presence of more 
upstream lakes is expected to result in lower downstream pCO2 levels (Sand-Jensen & Staehr, 2012) while CO2 
production and hydrological connectivity might increase during periods with ephemeral water cover (Johnson et al., 
2008; Marcé et al., 2019) as also evident in temporary wetlands (Abril et al., 2014). Higher pCO2 levels in 
agricultural catchments compared to forest-dominated catchments, have also been observed (Borges et al., 2018). 
Finally, the influence on pCO2 of catchment input relative to in-stream processes is expected to decrease with stream
width and, thus, with distance from the source (Hotchkiss et al., 2015). This gradual shift in the contribution of in-
stream and catchment processes to pCO2 production is accompanied by changing downstream hydrology as the 
catchment area and stream discharge increase. For example, S. Liu & Raymond (2018) show that the relationship 
between pCO2 and stream discharge was negative in small streams and positive in large streams, but the FCO2–stream
discharge relationship was generally positive across all stream orders. Therefore, stream discharge plays a dual role 
in pCO2–FCO2 dynamics, by controlling stream hydraulics and in turn k, the CO2 input from the catchment and the in-
stream CO2 generation. Consequently, identifying important climate and environmental drivers of pCO2 is also the 
key to improving the accuracy of upscaled estimates of FCO2 from stream sites to fluvial networks. Additionally, if 
data related to the important variables are readily available, then predictions of large-scale carbon emissions can be 
made regarding sparsely investigated or remote areas.

Previous studies have often applied linear models and stepwise model selection (Horgby et al., 2019; Hutchins et al.,
2020; Weyhenmeyer et al., 2012) to approximate the relationship between stream pCO2 and its predictors. However,
the proportion of explained variation has generally been low. An attractive approach for improving our ability to 
predict pCO2 in stream networks is to apply methods from the field of machine learning. These techniques have 
been increasingly applied in ecological, hydrological and biogeochemical studies (Barbarossa et al., 2018; Olden et 
al., 2008). Machine learning offers several efficient models that may achieve high predictive accuracy of new 
observations (James et al., 2013). As opposed to more traditional statistical techniques such as a linear regression 
model, the functional relationship between response and predictors are not defined beforehand but instead “learned” 
from data. The flexibility of the models is tuned based on their ability to generalize on new observations. Not only 
does this way of fitting models to data result in more accurate predictions, but new insights on important drivers can 
also emerge. These models can be applied to areas of interest because by incorporating the spatial drivers explicitly 
using geographical information systems (GIS), we can obtain high-resolution maps of pCO2 in streams. High 
resolution is crucial for determining the role of streams in large-scale carbon emissions and at the same time is 
useful for catchment-scale studies. Reducing the uncertainty associated with predicting pCO2 at new sites improves 
the accuracy of up-scaled emission estimates and, in turn, our ability to constrain the inland waters in global scale 
carbon emissions.

In an attempt to improve our understanding of carbon dynamics and emissions in large scale river networks we 
compiled open geospatial and water chemistry data and applied machine learning methods to predict pCO2. 
Scandinavia spans large gradients in geology, climate and land cover, and it is representative of the north temperate 
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zone, making it a suitable study region to explore our suggested approach. Therefore, we compiled open data on 
alkalinity, pH and water temperature and estimated pCO2 from stream sites in Denmark, Sweden and Finland. We 
derived catchment and climate characteristics believed to be important predictors of pCO2. We compared multiple 
predictive models and combined the best one with a high-resolution model of the stream network, in order to predict
pCO2 levels throughout the network. To demonstrate how this could be used in large scale carbon budgets, we also 
estimated the mean annual k and FCO2 using a coarser-resolution map of surface runoff. Our hypothesis: pCO2 in 
stream networks can be accurately predicted from catchment characteristics and form the basis for future estimates 
of FCO2.

2 Methods

2.1 Estimation of pCO2

We downloaded open monitoring data from environmental agencies in Denmark (DNK), Sweden (SWE) and 
Finland (FIN; MFVM & DCE, 2019; MVM, 2019; SYKE, 2019). We selected observations where data on water 
temperature, pH, alkalinity and coordinates were available for the period 1990–2018. Data on water depth were also 
downloaded when available; samples taken from deeper than 2 meters were discarded to retain surface water 
observations only. Estimation of pCO2 from pH and alkalinity is potentially biased due to the possible influence of 
non-carbonate alkalinity (Abril et al., 2015), especially in low-alkaline regions. To minimize alkalinity- and pH-
related biases in the calculation of pCO2, we applied the corrections for pH measurement error and organic alkalinity
described in Liu et al. (2020) and only used alkalinity values between 0 and 10 meq L-1. We calculated pCO2 using 
the seacarb R-package (Gattuso et al., 2018) and excluded observations when the calculated pCO2 exceeded 40,000
μatm, as we believed these to be biased. In order to calculate a robust annual average, we used the same procedure 
as Lauerwald et al. (2015). First, we calculated the monthly median pCO2 for each site discarding months with less 
than three observations. Secondly, we performed linear interpolation between months discarding sites with gaps 
exceeding three months. Finally, we calculated the annual mean pCO2 for a total of 2298 sites.

2.2 Spatial data processing

We downloaded open, remote-sensing data products made available by the EU (EEA, 2016) and previous studies 
and derived several variables that are likely to influence stream pCO2. We used the WorldClim version 1.4 data 
product, which included mean annual air temperature and annual precipitation (Hijmans et al., 2005). These include 
variables related to geo-morphometry, climate, land cover and stream network proximity. More specifically, we 
used a digital elevation model (DEM, EU-DEM version 1.1), high-resolution themes (grassland, water, forest) and 
Corine Land Cover (agriculture) data products. We created binary layers of the categories included in each high-
resolution theme, resulting in multiple presence/absence layers of grassland, coniferous forest, broad-leaved forest, 
permanent water, temporary water, permanent wetness and temporary wetness.

To ease computations, the region was split into five major basins, each with a buffer of 25 km to avoid edge effects. 
TauDEM software (version 5.3; Tarboton, 2017) was used for hydrological processing of DEMs and to calculate 
height above nearest drainage (HAND) and stream proximity metrics (e.g. stream order and network length). In 
order to create a realistic model of the stream network, we adapted the approach described by Y. Y. Liu et al. 
(2018). For this purpose, we used a stream map (EU-HYDRO) based on photo-interpretation of very-high-resolution
imagery (EEA, 2017). This ensures consistency between the modeled stream network and calculated flow directions.
Hydrological conditioning of DEMs enabled us to remove obstacles (e.g. roads and culverts) along the stream-lines 
and pits; Garousi-Nejad et al. (2019) describe the procedure in detail. Following DEM preprocessing, we calculated 
flow direction (deterministic-8), catchment area, stream order, total flow path and longest flow path. We calculated 
HAND along the entire network and used the proportion of the catchment area with a HAND less than 2 m as a 
proxy for stream–groundwater connectivity. We determined catchment averages for continuous variables and 
proportions for categorical predictor variables for all grid cells in the stream network. Sites not coinciding with the 
stream network were moved along the flow direction for a maximum distance of 250 m (10 times the resolution) 
towards the modeled stream network and sites with a drainage area below 6.25 ha (10*10 times the resolution) were 
discarded. We used a suite of open-source software for the spatial analysis (GDAL & OGR, 2018; Hijmans, 2019; 
McInerney & Kempeneers, 2015; Pebesma, 2018).
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2.3 Predictive modeling

To evaluate the performance of candidate models and assess the accuracy of the final model, respectively, 80 % of 
the initial 2293-observation dataset was designated as the training set; the remaining 20 % of observations 
comprised the test set. As the density distributions of many predictor variables were skewed, we applied 
preprocessing using the Yeo-Johnson power-transformation (Yeo & Johnson, 2000) followed by standardization 
(subtracting the mean and dividing by the standard deviation). To avoid intercorrelation between predictors, we 
excluded all variables (catchment proportion of agriculture, Strahler order, total and longest network path) with an r-
value (Pearson correlation) greater than 0.65. This left 11 explanatory variables available for predictive modeling 
(Table 1). The response variable pCO2 was log10 transformed to improve the normality of the distribution.

Table 1. Units, ranges, sources and resolutions (original/used) of catchment variables used for 
predictive modeling of stream pCO2.

Variable Unit Range Resolution (m) Data source

catch. avg. elevation m 0–965 25/25 EU-DEM v1.1

catch. avg. slope ° 0.2–11.9 25/25 EU-DEM v1.1

catch. area km2 0–50032 25/25 EU-DEM v1.1

catch. prop. HAND < 2 m 0–0.9 25/25 EU-DEM v1.1

catch. prop. grassland 0–0.7 20/25 EU Grassland 2015

catch. prop. coniferous forest 0–0.9 20/25 EU Dominant leaf type 2012

catch. prop. broad-leaved 
forest

0–0.7 20/25 EU Dominant leaf type 2012

catch. prop. perm. water 0–0.5 20/25 EU Water and Wetness 2015

catch. prop. temp. water 0–0.1 20/25 EU Water and Wetness 2015

catch. prop. perm. wet 0–0.1 20/25 EU Water and Wetness 2015

catch. prop. temp. wet 0–0.6 20/25 EU Water and Wetness 2015

catch. avg. annual precipitation mm 487–1142 ~1000/25 Worldclim 1.4

In order to select the best-performing model to predict pCO2, we compared several machine-learning models of 
different complexity. We compared their performance using 5-fold cross-validation repeated 25 times (outerloop for 
performance estimation) on the training set. For optimal performance, most predictive models depend on the tuning 
of hyperparameters. To estimate the optimal hyperparameters in our case, we defined probable search spaces and 
used random sampling (50 iterations) and 5-fold cross-validation (inner tuning loop). The performances of the 
trained models were compared by using the root-mean-square error (RMSE) and the coefficient of determination 
(R2). The best-performing model was then tuned and trained on the training set. Here, the optimal hyperparameter 
settings were identified after a more exhaustive search using sequential model-based optimization with a maximum 
of 200 iterations (Bischl et al., 2017). With the training set and the same tuning procedure used for model 
comparison, we also assessed model performance when extrapolating to new geographical regions using a “leave-
one-country-out” cross-validation scheme. Predictive modeling was performed using the machine-learning meta-
package mlr in R (Table 2; Bischl et al., 2016).
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Table 2. Candidate models for prediction of pCO2, their associated R-packages and the 
hyperparameters tuned during model training.

Model
Packag
e Hyperparameters

Linear Model stats

k-Nearest Neighbour FNN K

Decision Tree rpart cp, maxdepth, minbucket, minsplit

GLM with Elasticnet 
regularization

glmnet alpha, lambda

Neural Network nnet size, decay

Support Vector Machine kernlab C, sigma

Random Forest ranger mtry, num.trees, sample.fraction, min.node.size

Extreme Gradient Boosting xgboost nrounds, max_depth, eta, subsample, min_child_weight, alpha, 
lambda

2.4 Estimating FCO2

Annual mean runoff data from Beck et al. (2015) and empirical relationships were used to estimate annual mean k 
and subsequently FCO2 throughout the stream network. We accumulated runoff throughout the stream network to 
estimate annual mean discharge (Q, m3 s-1). Empirical relationships were used to estimate flow velocity (V, m s-1) 
from discharge (Raymond et al., 2012) and k600 (m d-1) from flow velocity and stream slope (S, m m-1; eq. 5 in Table 
2 in Raymond et al. (2012)). Stream length (L) was approximated as the diagonal length of the 25-m-resolution grid 
cells. In order to estimate stream water temperature throughout the network, we determined the relationship between
annual mean water temperature (measured at the pCO2 sites) and air temperature (WorldClim) using linear 
regression. We used this model (95 % CI in brackets, slope = 0.55 [0.53, 0.57], intercept = 5.08 [4.97, 5.18], R2 = 
0.59) to estimate stream water temperature,  which in turn enabled us to calculate the gas transfer velocity (k) from 
k600 by the ratio of Schmidt numbers (Jähne et al., 1987). The FCO2, reported as g C m-2 d-1, was calculated using eq. 1
for the entire network with a pCO2sat of 400 μatm.  Stream segments intersecting inland water bodies in the EU-
HYDRO data product were removed. 

All data analysis was performed in R version 3.5 (R Core Team, 2018) and Python version 3.7 (Van Rossum & 
Drake, 2011). All code used in the analysis, the predictive model and resulting high-resolution grids (25 m 
resolution) with predicted stream pCO2, k and FCO2 throughout the stream network have been deposited in an open 
repository.

3 Results

3.1 Stream pCO2

Water chemistry data were collected across three Scandinavian countries, spanning a large geographical region from
54.5–70 °N and 8–31.5 °E (Fig. 1). The region covers a broad, north-temperate climate zone with mean annual air 
temperature ranging from -7–9.4 °C and very different degrees of anthropogenic influence and land use. 
Observations were spread evenly across the countries except for the northern parts of Sweden and Finland, where 
alkalinity were very close to or zero. We calculated annual mean pCO2 and determined catchment characteristics for 
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2298 sampling stations. The average observed pCO2 was 1494 (SD: 1426 and range: 17–15646) μatm; 13 % of the 
sites were below atmospheric saturation. The degree of supersaturation (mean pCO2) was generally much more 
pronounced at sites in Denmark (3158, SD: 2403 and range: 438–15646 μatm) compared with Finland (1476, SD: 
1035 and range: 17–8516 μatm) and Sweden (1069, SD: 960 and range: 91–9269 μatm; Fig. 1c). Annual mean 
alkalinity and pH were mostly higher in Denmark (2.5, SD: 1.3 and range: 0.12–6.8 meq L-1 and pH 7.6, SD: 0.4 and
range: 6.1–8.4) relative to Sweden (0.7, SD: 1.0 and range: 0.12–6.0 meq L-1 and pH 7.2, SD: 0.3 and range: 6.1–
8.3) and Finland (0.4, SD: 0.3 and range: 0.12–2.9 meq L-1 and pH 6.7, SD: 0.3and range: 6.1–9.4). High pCO2 
levels were found to occur in both high- and low-alkaline areas.
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Figure 1. Density distributions and spatial variation of pCO2, alkalinity and pH. a) World map 
showing the study region in red. Violin plots show the density distribution and median 
(horizontal line) of pCO2 (c), alkalinity (e) and pH (g) by country. Gridded maps (40 km 
resolution) show the number of sites (b) and mean pCO2 (d), alkalinity (f) and pH (h).
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3.2 Predictive model selection

In order to predict pCO2 throughout the stream network, we used nested cross-validation to compare the predictive 
performance of eight machine-learning models (Fig. 2). The simplest models (linear model, decision tree and k-
Nearest Neighbor) did not perform well; the best of these was k-Nearest Neighbor. The Random Forest model 
showed the best performance, achieving the lowest RMSE and highest R2. Generally, models with higher flexibility 
performed the best, especially tree-based ensemble models utilizing bagging or boosting (Random Forest and 
extreme gradient boosting). The distributions of predictive performance estimates showed some skewness but 
generally within a narrow range, suggesting decent model stability. The superior performance of the most flexible 
models indicates that the relationship between pCO2 and catchment variables is complex, likely due to non-linearity 
and interactions between variables. In short, the more flexible models generated markedly more accurate predictions
of pCO2 than the traditional linear model.

Figure 2. Violin plots showing the density distribution of 125 evaluations of predictive 
performance (5-fold cross-validation repeated 25 times) of eight candidate models as the root-
mean-square error (RMSE; a) and explained variation (R2; b). Models are sorted by decreasing 
predictive performance.

3.3 Predictive model performance

The Random Forest model trained and tuned on the training set, showed good performance on the test set with low 
RMSE (0.22 log10(μatm)) and high R2-values (0.66; Fig. 3). These performance estimates are slightly worse than the
estimates found during model selection but within the expected distribution (Fig. 2). The pCO2 predictions clustered 
around the 1:1 line, with slight underestimation where pCO2 was observed to be high and overestimation where it 
was observed to be low (Fig. 3).

9/23



An edited version of this paper was published by AGU. Copyright (2020) American Geophysical Union.
Martinsen, K. T., Kragh, T., & Sand‐Jensen, K. (2020). Carbon dioxide partial pressure and emission throughout

the Scandinavian stream network. Global Biogeochemical Cycles, 34, e2020GB006703.
https://doi.org/10.1029/2020GB006703

Figure 3. Performance of the final Random Forest model on the test set sample; shown as 
predicted (y-axis) versus observed (x-axis) values (log10 pCO2). The dotted line is a 1:1 
relationship.

Variables of most categories (except stream proximity) were included in the top six most important predictor 
variables in the final model (Fig. 4a): geo-morphometry (elevation, slope), land cover (permanent, temporary water 
cover and grassland) and climate (precipitation). The single most important variable was the average catchment 
elevation. The partial dependence plots show the response profile of the important variables in relation to pCO2 (Fig.
4b). The response profiles of the most influential variables were non-linear. pCO2 decreased with increasing 
catchment elevation and slope showing that the highest pCO2 values are generally found in streams in lowland areas 
with flat terrain. Higher catchment precipitation, temporary water cover and especially the proportion of permanent 
water cover also resulted in lower stream pCO2 levels. The catchment proportion of grassland had a positive 
influence on pCO2 at low values. 

The performance of the Random Forest model was worse when extrapolating beyond the geographical region used 
for training the model. Leaving one country out for testing while training the model on the two remaining resulted in
much higher RMSE (log10(µatm), Denmark: 0.28, Sweden: 0.31 and Finland: 0.28) and poor R2-values (Denmark: -
0.09, Sweden: 0.09 and Finland: 0.06). A negative R2 implies that model performance is worse than using the mean 
of the response. 
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Figure 4. Variable importance (a) and partial-dependence plots (b) of the six most important 
variables in the Random Forest model. In b, the x-axis is the predictor variables after they have 
been transformed and scaled to unit standard deviation.

3.4 Estimated stream pCO2 and FCO2

We applied the trained Random Forest model to predict stream pCO2 throughout the modeled stream network 
consisting of 7.8 million grid cells at a resolution of 25 m. For 7.6 million grid cells in this network we were also 
able to estimate FCO2 and k using supplementing data on runoff and air temperature. This modeled stream network 
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visually appeared to correspond well with the network observed from very-high-resolution map imagery (Fig. 5a) 
and had an approximate length of 268.807 km (Denmark: 20.828 km, Sweden: 179.030 km and Finland: 68.949 
km). The high-resolution pCO2 network enabled local comparisons and yielded expected pCO2 in a wide range of 
stream branches and confluences (Fig. 5b).

Figure 5. Example of the grids resulting from the analyses. Stream network on a map (OSM, 
2020) showing the agreement between real stream lines and the network modeled and used here 
(a). Predicted pCO2 (b), k (c) and FCO2 (d). The stream network resolution is 25 m and the 
depicted region is 4 by 4 km.
 

The mean of all pCO2 predictions was 1134 (SD: 780 and range: 154–8174) μatm. The mean estimated k was 3.4 
(SD: 4.1) m d-1 and FCO2 was 1.2 (SD: 1.4) g C m-2 d-1. We calculated density distributions from 10 thousand random 
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cells in the final grids (Fig. 6). The predicted pCO2 was similar to the observations used for modeling (Fig. 1c), with 
a higher mean in Denmark (2721, SD: 900 and range: 592–8174 μatm) compared with Finland (1274, SD: 560 and 
range: 246–5640 μatm) and Sweden (896, SD: 584 and range: 154–5871 μatm; Fig. 6a). Mean estimated k values 
were generally low in Denmark (2.2 and SD: 1.4 m-1) and Finland (2.0 and SD: 2.6 m-1), while higher values were 
more common in Sweden (4.0 and SD: 4.6 m-1; Fig. 6b). These opposites (high pCO2, low k and vice versa) yielded 
more similar FCO2 distributions (Fig. 6C), though with higher mean emission rates in Denmark (3.2 and SD: 1.8 g C 
m-2 d-1) compared with Finland (1.2 and SD: 1.4 g C m-2 d-1) and Sweden (1.0 and SD: 1.1 g C m-2 d-1). 
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Figure 6. Density distributions (y-axis scaled to 1) of predicted pCO2 (a), k (b) and FCO2 (c) 
sampled (n=10,000) from the final grids and colored by country. The vertical dotted line in A 
shows the atmospheric pCO2. Tails of the distribution have been cut (maximum 2 % of 
observations) to improve visualization.

14/23



An edited version of this paper was published by AGU. Copyright (2020) American Geophysical Union.
Martinsen, K. T., Kragh, T., & Sand‐Jensen, K. (2020). Carbon dioxide partial pressure and emission throughout

the Scandinavian stream network. Global Biogeochemical Cycles, 34, e2020GB006703.
https://doi.org/10.1029/2020GB006703

4 Discussion

4.1 Predicting pCO2 in large stream networks

We combined open data from several sources and a Random Forest model to produce high-resolution maps of 
stream pCO2 and estimates of k and FCO2 covering three Scandinavian countries. As hypothesized, stream pCO2 can 
be predicted from catchment characteristics. Our use of a high spatial resolution of 25 m is an essential 
improvement, as it enables both local comparisons and calculations of more accurate national carbon emissions. 
Since the data required for our predictive model is obtained via remote sensing products whose use is widespread, 
our model can be used to predict pCO2 levels over much larger geographical areas than is possible otherwise. 
Background data covering the European Union are already available and global coverage is likely within reach, 
which should make it possible  to predict European and global pCO2 levels and estimate FCO2 emissions from 
streams using our modeling approach. Expanding the predictive capacity to larger geographical regions will require 
more observations of pCO2 covering a wider range of environmental conditions in order to train performant models. 
It is evident that leaving countries out during model training leads to poor predictive performance showing that 
extrapolation to new geographical regions is still difficult. It should be possible to achieve similar model 
performance when training new models with data for larger regions and it is not uncommon to see improvements in 
predictive performance when including more observations.

The primary goal of our analysis was to predict pCO2 throughout a realistic model of a large stream network. Due to 
the scale chosen, we likely missed the smallest streams. A Danish stream inventory found that 19,260 km of streams
were wider than 2.5 m (Sand-Jensen et al., 2006). Wallin et al. (2018) used a virtual stream network for Sweden in 
which streams of order 3 and above made up 95,353 km. Comparing these numbers with the stream lengths included
in our analysis, lead us to believe that we missed only streams less than ~2.5 m wide, or of 1st and 2nd stream order.
Furthermore, our stream lengths are likely conservative estimates due to bifurcation and sinuosity, which are 
approximated here as the diagonal of the grid cell size. Ultimately, our modeled stream network depends on data 
that is based on photo-interpretation of remote sensing imagery, where extraction of small streams is limited by both
image resolution and obstructions such as forest canopies. These biases may provide an explanation for the 
discrepancy between the length of our network and that of Wallin et al. (2018). Modeling a realistic stream network 
that captures higher levels of detail than our models, will be possible with higher-resolution elevation models and 
finer-scale stream networks, which are likely available from national governmental agencies.

4.2 Models for predicting stream pCO2

The mean of all our pCO2 predictions (1134 μatm) is lower than Lauerwald et al.’s (2015) and Raymond et al.’s 
(2013) estimates of global stream pCO2 of 2400 and 3100 μatm (indirect estimation of pCO2), as well as those of 
Wallin et al. (2018), who estimated 2468 μatm based on direct measurements in Swedish low-order (1–4) streams. 
For Sweden, our mean resembles that of previous studies when streams of all sizes are included (Humborg et al., 
2010; Weyhenmeyer et al., 2012), while being slightly lower when only small streams are included (Wallin et al., 
2018). For this study region which is dominated by low-alkaline streams, the pH and organic alkalinity corrections 
of Liu et al. (2020) are important for reducing the bias of pCO2 calculations and result in much lower values. Our 
model’s predictions of pCO2 achieved good accuracy (RMSE=0.22) and explained variation (R2=0.66). This shows 
that, as we initially expected, a random forest model using only catchment predictors as input variables was a 
suitable model of stream pCO2 in the network. This highlights the possibility of efficiently predicting annual CO2 
dynamics in large stream networks. The methodology might also be applicable for other carbon species such as 
methane or streams solutes in general which are believed to be driven by catchment scale processes.

Our approach to modeling pCO2 and FCO2 in stream networks differs from previous studies primarily in the use of 
machine learning methods as opposed to linear models for predicting pCO2. This contrasts with the simpler models 
and traditional linear models which have often been used in previous similar studies. For example, Lauerwald et al. 
(2015) trained a linear model with an R2 of 0.47 using 1182 global samples. While the performance of this model is 
difficult to compare directly to the approach presented here, in part due to the different scales of the analyses, it is 
notable that part of the variation remains hard to explain, as also observed in other studies (Horgby et al., 2019; 
Humborg et al., 2010; Hutchins et al., 2020; Teodoru et al., 2009; Weyhenmeyer et al., 2012). A potential bias is 
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introduced during modeling when a functional form of a relationship, e.g. linear, is assumed because as we also 
show, non-linear relationships between pCO2 and predictors seem to be prevailing. Also, poor model fits could 
result from the omission of important predictors due to them being unknown or unavailable. Including drivers at 
multiple scales ranging from very proximate point processes, to catchments (as done here) and regions could likely 
improve models further. Hutchins et al. (2019) found that the inclusion of regional structure, correlated to terrestrial 
NPP and soil carbon, improved prediction of stream DOC, pCO2 and methane. Including such regional baseline 
effects could be useful if regions or basins with distinctive carbon availability can be delineated. This should likely 
include subsurface processes that reflect pCO2 in groundwater and geological influences such as weathering 
processes. Currently, it is difficult to identify the contribution on stream pCO2 of such regional processes.

One option for improving the ability to predict pCO2 in stream networks is to use more flexible models. However, 
flexibility comes at a cost and model tuning is necessary to avoid overfitting the training data, but the result is often 
more accurate predictions. We compared multiple machine learning models, and unsurprisingly the Random Forest 
model proved to be the best at generalizing the conditions of new samples. Many studies have found that this or 
similar types of models (extreme gradient boosting, gradient boosting machines, etc.) generally perform very well, 
also in settings with interactions, non-linearity and high dimensionality (James et al., 2013). The performance of 
linear models could likely be improved somewhat, compared to the simple way they were implemented here, by 
including interactions and quadratic terms. However, because structural relationships are complex and often 
unknown, it is left upon the researcher to uncover these relationships, which makes the modeling process difficult. 
Training a Random Forest model, we automatically approximate the functional relationships and attain high 
predictive accuracy (Breiman, 2001). As a downside, we are left to interpret the influence of predictor variables after
model training. Since our end goal is improved predictability of stream pCO2 on a large scale, sacrificing model 
interpretability for predictive performance seems like a reasonable choice.

4.3 Drivers of stream pCO2

The responses of pCO2 to the most important catchment variables are generally in agreement with previous studies. 
The influence of geo-morphometric variables such as catchment elevation and slope has been observed before (J. B. 
Jones & Mulholland, 1998b; Lauerwald et al., 2015; Smits et al., 2017), but the underlying mechanisms for these 
relationships remain unclear. Increasing catchment slope should intuitively decrease pCO2 due to higher stream 
channel slope and, in turn, higher k and FCO2 in upstream reaches, but other mechanisms might also be relevant. 
Catchment slope may influence carbon loading in streams by acting as a proxy of wetland formation and soil 
accumulation (Smits et al., 2017). Lower slope and lower-altitude catchments are likely to have thicker soil profiles, 
be richer in organic matter and have lower hydraulic conductivity, resulting in higher water retention time in the 
catchment. This results in a higher quantity of organic matter, but of lower quality, which influences the in-stream 
processing of organic matter (Jankowski et al., 2014). Because catchment slope, and to some degree elevation, 
influences both k and carbon loading, this may explain its success as a predictor of stream pCO2 on large scales. An 
increasing proportion of permanent water cover (primarily lakes) in the catchment also influences pCO2 negatively. 
While the lake and stream pCO2 may differ substantially, especially during summer (Weyhenmeyer et al., 2012), the
influence of lake processes on downstream pCO2 may diminish fairly quickly as their impact is overtaken by that of 
atmospheric exchange and new groundwater inputs (Crawford et al., 2014). However, it is likely that, due to long 
residence times accompanied by photosynthetic consumption, carbon retention and atmospheric emission of CO2, 
pCO2 is lower in streams whose catchment areas have higher proportions of lakes.

We derived a range of stream network proximity metrics, e.g., different stream orders and network lengths; as 
expected, all were highly correlated with catchment area characteristics, which was the only variable kept onwards 
for predictive modeling. We found that catchment area did not strongly influence pCO2, however, it decreased with 
elevation, slope and permanent water suggesting that position along the stream network (e.g. downstream reaches) 
generally is important. This is not surprising, because as the stream-flow increases, so does the influence of in-
stream metabolism relative to catchment contributions of CO2 from soil respiration or groundwater inflow on stream
pCO2 (Hotchkiss et al., 2015). Furthermore, pCO2 may decline downstream due to the ongoing emissions of CO2 to 
the atmosphere, resulting in rapid declines on a scale ranging from meters to kilometers (Duvert et al., 2018). The 
influence of stream discharge, therefore, depends on the balance between its effect as a delivery mechanism of 
surface- and groundwater CO2 — both directly and indirectly by organic matter (S. Liu & Raymond, 2018) — and 
as a sink that controls FCO2 through stream hydraulics (Long et al., 2015). Headwaters and smaller streams often 
have higher pCO2 because they often are subsidized by terrestrial inputs; the influence of these inputs declines as 
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stream size and discharge increase. Input of readily degradable organic matter does, however, contribute to CO2 
supersaturation, which was the prevailing state (87 % of sites) of the stream sites included in this analysis. One 
could expect oxygen and inorganic carbon to be in molar balance, but this is rarely the case (Torgersen & Branco, 
2008). Instead, the imbalance could likely be used to examine the relative contribution of the catchment to in-stream
processes (Vachon et al., 2020). The size-dependent metabolic scaling of streams appears similar to that of lakes, 
where the imbalance between the Foxygen and FCO2 changes with lake surface area (Martinsen et al., 2019). A 
comparison of such integrating measures within and between ecosystems could provide new insight into the drivers 
of pCO2 production and the “metabolic fingerprint” of streams.

4.4 Upscaling gas transfer velocity and flux

Using the predicted pCO2 throughout the large stream network, we show how stream FCO2 can be calculated 
throughout the network by estimating k from empirical relationships. Such upscaling exercises are necessary to 
advance our understanding of streams in large scale carbon budgets. Increasing the temporal resolution from annual 
to monthly time scales might provide further improvements. Especially seasonal variations in hydrology and also ice
cover, which we did not include in this analysis, are expected to have large influence on k and in turn FCO2. High 
resolution data on runoff and remote sensing imagery could help alleviate these issues. The high influence of k on 
FCO2, especially in steep and rugged terrain, makes it a reasonable target for new model refinements that could 
further improve estimation of large scale FCO2, despite recent studies suggesting that the temporal variability is 
difficult to predict (Wallin et al., 2013).

Our work demonstrates the ease with which pCO2 grids can be used to improve FCO2 estimates in stream networks 
across a large spatial scale. However, while the predictive pCO2 model has been validated here, the uncertainties of 
the k and FCO2 estimates are unknown because validation is lacking. Interpretations of localized phenomena should 
thus be made more cautiously. Future studies should improve the estimation of these processes and focus on 
quantifying the associated uncertainty.

5 Conclusions

Using open and readily available data sources, we used a Random Forest model to produce a high-resolution grid of 
stream pCO2. Using additional data on runoff and air temperature, we also estimated stream k and FCO2. Due to its 
high resolution, our modeled stream network is both realistic and covers a large proportion of the region’s total 
stream network. We have shown how the use of more flexible predictive models can improve the accuracy of 
prediction. Furthermore, we have demonstrated how emissions of an important greenhouse gas can be predicted in a 
streams network using only catchment characteristics derived from remote sensing products. This suggests that our 
approach can easily be adapted for work on other regions and likely other carbon species. We have provided an 
approach to predict aquatic carbon species which could be relevant for future studies of carbon cycling and 
budgeting from catchment to global scale. 
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