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Abstract
Lake morphometric features like surface area, volume, mean, and maximum depth are important predictors

of many physical, biological, and ecological processes. Lake bathymetric maps that present the lake basin con-
tours are thus an integral part of limnological investigations. Accurate but cumbersome traditional bathymetric
surveys measure the depth using a lead line or echosounder. Recently, airborne bathymetric mapping using
imagery or laser scanning has been attempted in shallow freshwater and coastal habitats. However, these
methods depend on the ability of light to penetrate the water column, which can be problematic in eutrophic
lakes and shallow lakes. To alleviate these issues, we developed and tested a deep learning model (based on the
U-net) using data from 153 lakes in Denmark to predict bathymetry using the topography of the surrounding
terrain. The deep learning model performed much better (pixel-wise mean absolute error: validation set = 1.75
and test set = 2.15 m) than baseline interpolation approaches (validation set = 3.12 m). In addition, the deep
learning model generated more realistic bathymetry maps that did not suffer from interpolation artifacts. We
find that the model performance improves slightly with increasing model size (number of trainable parameters)
and the extent of the surrounding terrain. In addition, our pretraining procedure improved performance and
reduced the time for model convergence. Because the model only relies on digital elevation data which are
widely available, it can be fine-tuned and used to predict lake bathymetry in other geographical regions.

Lakes are prominent landscape features covering approxi-
mately 2% of the global land area (Pekel et al. 2016). These
important ecosystems harbor many species and play an essen-
tial role in element cycling along the freshwater continuum
(Tranvik et al. 2009; Biggs et al. 2017). The topography of the
global land surfaces can be mapped at high spatial resolution
using remote sensing methods (Verpoorter et al. 2012; Abrams
et al. 2020). However, information regarding underwater sur-
faces, water column depth, or lake bottom elevation is much
more limited. Improved bathymetric maps are a prerequisite

for many kinds of local to regional scale studies of biological,
chemical, and physical lake processes.

Lake morphometry influences physical properties (turbu-
lence and stratification-mixing dynamics), water chemistry,
and the distribution of organisms (Fee et al. 1996; Dolson
et al. 2009). Morphometric variables such as lake volume,
mean (zmean), and maximum (zmax) depths are important pre-
dictors of many processes, including water retention time,
nutrient loading, and cycling, as well as productivity of phyto-
plankton, zooplankton, and fish (Håkanson 2005). Even more
usefully, hypsographic relationships and bathymetric maps
communicate the extent of littoral zones colonized by sub-
merged plants (Seekell et al. 2021) and hypolimnion zones
that might be subject to seasonal oxygen depletion (Deeds
et al. 2021), and also can be incorporated into physical models
(Fricker and Nepf 2000). Lake bathymetry and derived mor-
phometric variables are thus used extensively to investigate
lake functioning. Yet, while historical data exist for some
lakes, particularly for larger and more iconic lakes, they are
not available for the large majority of lakes.

Traditionally, lake bathymetry is determined by measuring
depth along regularly distributed sampling points or transects
using a lead line or, in recent times, an echosounder that
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provides more accurate information on depth and position
(Høy 1988). Even more recently, remote sensing imagery or
“Light Detection and Ranging” (LiDAR)-based methods have
been used to measure depths in aquatic habitats (Hilldale and
Raff 2008; Dörnhöfer and Oppelt 2016). Although these
methods are more efficient and can cover larger areas, the
associated costs and analytical complexity are high
(Gao 2009). Furthermore, as both imagery and LiDAR
methods depend on light penetrating the water column, their
use is restricted by high turbidity (Tripathi and Rao 2002).
This becomes a challenge in both eutrophic and shallow lakes,
where turbidity is often high due to phytoplankton, colored
dissolved organic matter, or re-suspended sediment particles
(Balogh et al. 2009), and may exhibit pronounced spatiotem-
poral variation (Martinsen et al. 2022).

Lake volume, zmean, and zmax can be estimated from empiri-
cal relationships with lake surface area (A), the slope of nearby
terrain, and other topographic features (Hollister et al. 2011;
Sobek 2011; Delaney et al. 2022). However, many research
objectives can only be fulfilled by referring to accurate bathy-
metric maps rather than morphometric features like volume
and zmax. Hollister and Milstead (2010) suggest a simple
method using only the shoreline and zmax to predict lake
bathymetry as a function of distance from the shoreline. Pre-
dictions can be further improved by including remote sensing
imagery (Hodúl et al. 2018; Yunus et al. 2019) or a digital ele-
vation model (DEM; Zhu et al. 2019).

Using a DEM to predict lake bathymetry overcomes some
limitations of imagery in systems with high turbidity. This
method assumes that lake bathymetry is related to the topog-
raphy of the surrounding terrain, as both the lake and land-
scape have been formed by the same processes (Hutchinson
1957). This should be the case for lakes of glacial origin, which
are the majority of lakes globally, and for reservoirs or riverine
lakes formed by damming (Kalff 2002). However, the func-
tional relationship between lake bathymetry and the sur-
rounding topography is unknown and likely variable between
lakes and geographical regions.

In recent years, deep learning methods have proved suc-
cessful in many applications. Deep learning is the process of
training multi-layered neural networks with many tunable
parameters from data, whereby the network gradually “learns”
to extract valuable representations at each layer of the net-
work (LeCun et al. 2015; Schmidhuber 2015). Neural networks
can thus approximate complex functional relationships
between paired input and output data in an automated fash-
ion and have proved to be suitable for predicting the content
of masked (missing) pixels in images (image inpainting;
Elharrouss et al. 2020). This is equivalent to predicting lake
bathymetry from the topography of the surrounding terrain:
the model input is a DEM with all lake pixels masked, and the
model is tasked with predicting elevation in each lake pixel.
For image inpainting tasks, models can be trained in an
unsupervised manner by providing inputs with pixels masked

at random and tasked to reconstruct the original image. Simi-
larly, this approach could be applied to pretrain models for
interpolation of missing pixels in DEMs, forcing the model to
learn useful landscape representations which may be advanta-
geous for downstream tasks such as predicting lake bathyme-
try (Erhan et al. 2010). A few studies have applied deep
learning methods to interpolate missing regions in DEMs (Qiu
et al. 2019; Yan et al. 2021) but to our knowledge, this has
never been applied to predict lake bathymetry.

In this study, we investigate methods for predicting lake
bathymetric maps from the topography of the surrounding
terrain. Using bathymetric maps from 153 Danish lakes, we
compare the performance of a deep learning approach with
four baseline methods. We explore the influence of
unsupervised pretraining and model size (estimated as the
number of trainable parameters) on model performance. We
hypothesize that: (1) deep learning yields superior lake bathy-
metric predictions; and (2) model performance improves with
pretraining and increased model size.

Methods
Study region

In Denmark, approximately 180 thousand lakes have been
identified; the majority (97.5% <1 ha) being small lakes
(median = 498 and mean = 4002 m2; SDFE 2021). Except for
southwest Jutland, the country was covered by ice during the
recent Weichsel glaciation, and most lakes, specifically pot-
hole lakes, are of glacial origin. The elevation range of the
landscape is small (minimum = �18 and maximum = 172 m).
In recent time, particularly the last 200 yr, human activity has
influenced the water table (e.g., tile drainage and damming)
and bathymetry (e.g., dredging) of many Danish lakes.

Data

Sources
Bathymetric data are derived from the work of land sur-

veyor Thorkild Høy, who generated accurate lake bathymetric
paper maps that were subsequently published in the book
series Lakes of Denmark (Høy 1988; Høy and Dahl 1991, 1993,
1995, 1996; Høy et al. 2004). The Danish Agency for Data Sup-
ply and Infrastructure provided us with digitized versions of
these paper maps (SDFE 2021). We excluded lakes formed by
coastal processes or peat dredging and small lakes with a sur-
face area (A) of less than 10 ha and zmax less than 1 m, as a
consequence of the insufficient resolution and vertical accu-
racy of the DEM. Lakes larger than 10 ha makes up approxi-
mately 60% of the total lake surface area in Denmark. Initial
experiments showed that the bathymetry of the small, shallow
lakes were difficult to predict at the applied resolution. In
addition, many of these small lakes are artificial, created for
various purposes, for example, reservoirs, gravel pits, and so
on which further complicates modeling of bathymetry based
on the surrounding terrain. The initial selection left 153 lakes
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distributed across Denmark for further analysis (Fig. 1), most
of which are in recently glaciated central Jutland and Zealand.
For each lake, we extracted surface elevations and the topogra-
phy of the surrounding terrain from a national DEM
(10 � 10 m resolution), created from a very high-resolution
(1.6 � 1.6 m) DEM covering Denmark.

Processing
For a given lake, the surrounding area where topography

influences lake bathymetry is difficult to quantify and likely
varies between lakes and depends on landscape history
(Heathcote et al. 2015). To investigate how this influences
model performance, we created DEM grids of three sizes for
each lake (Fig. 2a). We expected this distance to scale with
A and created grids using three buffer distances (33%, 66%,

and 100% of
ffiffiffiffi

A
p

). The grids were further enlarged until each
width and height was a multiple of 16, to conform with the
model architecture. Finally, the DEM grid and Høy’s bathy-
metric maps were merged and elevation values were rescaled
to a �1 to 1 range.

Baseline
We use multiple interpolation methods as baselines for the

suggested deep learning approach, which similarly only rely
on topography of the surrounding terrain as input. We do not
use distance-based methods (Hollister and Milstead (2010)), as

this would require an independent model to predict zmax for
each lake. We use two general purpose grid interpolation
methods (Baselinelinear and Baselinecubic) implemented in the
Python Scipy package (Virtanen et al. 2020) and two methods
developed for image inpainting tasks (BaselineTelea and
BaselineNavier-Stokes; Bertalmio et al. (2001); Telea (2004))
implemented in the Python OpenCV package (Bradski 2000).
Baselinelinear and Baselinecubic use the entire DEM grid for
interpolation, while the performance of BaselineTelea and
BaselineNavier-Stoke does not depend on the size of the DEM
grid because the masked region is filled starting from the inner
boundaries (lake shoreline). Predictive performance, defined as
the pixel-wise mean absolute error (MAE) for the mask region
of the baseline methods, was assessed on both the validation
set for comparison with deep learning methods and the entire
dataset.

Deep learning approach

Model architecture
We used a U-net architecture to predict lake bathymetry

from the surrounding terrain. The U-net, a fully convolutional
neural network where both the input and output are rectangu-
lar images or grids, and is frequently used for semantic seg-
mentation and image inpainting tasks (Ronneberger
et al. 2015; Elharrouss et al. 2020). The input to U-net in our
setting is a DEM grid with a masked region (the lake): the
model is tasked with predicting elevation values for each pixel
within this region, that is, the lake bathymetry (Fig. 2). The
model is trained, updating its parameters, to minimize the dis-
crepancy between its predictions and the ground truth
through multiple iterations (epochs) on the training data set.
In order for the model input and output dimensions to be
identical, inputs should be divisible by 16 because the U-net
encoder downsamples the input four times, halving the spatial
dimensions each time (24 = 16). Likewise, the U-net decoder
upsamples the spatial dimensions four times.

Pretraining
We considered two ways of initializing the trainable param-

eters of the U-net, either at random (U-netX-Random) or using
parameters obtained from unsupervised pretraining (U-netX-
DEM). Obtaining good initializations from unlabeled data with
pretraining have proven to improve model performance when
fine-tuned with labeled data (Erhan et al. 2010). We pretrained
the models by generating DEM grids and lake-shaped masks to
simulate the task of predicting lake bathymetry from the
topography of the surrounding terrain (Supporting Informa-
tion Fig. S1). Specifically, we selected 10,000 DEM grids of dif-
ferent sizes and aspect ratios, resizing each to have a height
and width of 256 � 256 pixels. To create lake-like mask
regions, we randomly selected the shapes of 1000 Danish
lakes. Furthermore, we applied augmentations to the
DEM grids and masks that simulate feasible lake shapes to
reduce overfitting. Augmentations were performed using the

Fig. 1. Topographic map of the study region (Denmark) with the lakes
included in the study (open points). The stippled line is the glacial maxi-
mum during the most recent glaciation.
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Fig. 2. The approach used to create three DEM grids (33%, 66%, and 100% times
ffiffiffi

A
p

) for each lake and predict lake bathymetry from the surrounding
terrain. (a) Lake Borre (blue) and the topography of the surrounding terrain and the three buffer distances used to predict lake bathymetry. (b) Lake Borre
(masked) and topography of the surrounding terrain (33% buffer). This is the input for the deep learning model. (c) Lake bathymetrical map of Lake
Borre (ground truth). (d) Bathymetry of Lake Borre predicted by the deep learning model. (e) Difference between the ground truth (c) and predicted (d)
lake bathymetry. The differences are used to calculate the loss (mean absolute error) when training the model.
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albumentations Python package (Buslaev et al. 2020) and
included shifting, scaling, rotating, flipping, and additionally
morphological operations (dilation and erosion) for the
masks.

Model training
The U-net models were trained to predict lake bathymetry

from the topography of the surrounding terrain. During train-
ing, we applied similar augmentations as described for pre-
training. Augmentations are used to reduce overfitting and
improve model training, in particular when the availability of
ground truth data is scarce. Models were implemented in the
Pytorch framework (Paszke et al. 2019) and trained using
PytorchLightning (Falcon & The PyTorch Lightning team,
2019). Models were trained on a desktop computer with a ded-
icated graphical processing unit (GPU; RTX A5000, 24 GB
RAM; Nvidia, California, USA).

Hyperparameters
This section describes specific choices for designing the var-

ious deep learning models reported in this work. These techni-
cal details are reported here primarily for the sake of
reproducibility. We used a U-net with four down- and
upsampling blocks, each consisting of two convolutional
layers (transposed convolutional layers used for upsampling)
followed by an activation function (leaky ReLU) and skip con-
nections between parallel downsampling and upsampling
blocks. The final activation function, “hard-tanh,” results in
output ranging between �1 and 1. To assess the influence of
model size, that is, the number of trainable parameters, we
trained models (U-net4, U-net8, U-net16, and U-net32) of four
sizes (0.121, 0.485, 1.9, and 7.8 million trainable parameters).

Models were trained using MAE as the loss function for the
mask regions and the ADAM optimizer (Kingma and Ba 2014)
using a learning rate of 0.0001. For the pretraining task,
models were trained for 1000 epochs using a batch size of 32.
For the lake task, models were trained for 500 epochs and, to
avoid resizing DEM grids and maintain the original spatial
dimensions, we used a batch size of 1 combined with gradient
accumulation every 8th iteration, which is equivalent to a
batch size of 8.

Model selection and evaluation
The 153 lakes were randomly partitioned into train–valida-

tion–test sets (60%–20%–20%) of 91, 31, and 31 lakes,

respectively. To identify the best model configuration, we
evaluated four model sizes, three buffer distances, and two
types of model initialization (24 models in total). The predic-
tive performance (MAE) of these models was evaluated on the
validation set. Finally, the performance of the best model was
assessed on the test set. In addition to MAE to evaluate perfor-
mance, we used root mean squared error (RMSE), the Pearson
product–moment correlation coefficient (rcorr), and the rela-
tionship between observed and predicted lake bottom
elevation.

Results
Lakes

The 153 lakes used to investigate the performance of differ-
ent methods for predicting lake bathymetry were generally
small to medium-sized (median = 44.8 ha and
mean = 161.7 ha) and shallow (median zmax = 5.6 m
and mean zmax = 8.1 m; Table 1). The deepest Lake Fure
(zmax = 38.2 m), the largest Lake Arre (3954.5 ha), and the
most voluminous Lake Esrum (0.234 km3) in Denmark were
all included.

Baseline methods
As expected, none of the four baseline methods accurately

predicted lake bathymetry (Fig. 3). Of the four, the two
inpainting methods (BaselineTelea and BaselineNavier-Stokes) per-
formed the worst. The two more general methods for grid
interpolation (BaselineLinear and BaselineCubic) performed bet-
ter, with BaselineCubic being the best, albeit with slightly
decreasing performance as the size of the DEM cropout
increased (validation set MAE at 33% = 3.12 m, 66%
= 3.15 m, and 100% = 3.17 m). All baseline methods per-
formed slightly better on the validation set alone than on the
entire dataset.

Deep learning method

Model performance
We used U-net models in different configurations to predict

lake bathymetry from the topography of the surrounding ter-
rain. To identify the best-performing model, we tested U-nets
of differing model sizes and initializations. In almost all cases,
using the U-net improved performance on the validation set,
relative to the baseline (Fig. 3). The best-performing deep

Table 1. Summary statistics (minimum, 1st quartile, median, mean, 3rd quartile, and maximum) of lake surface area, surface elevation,
maximum depth, and mean depth for all lakes (n = 153) included in the analysis.

Unit Min. Q1 Median Mean Q3 Max.

Surface area ha 10 17.3 44.8 161.7 145.5 3954.5

Surface elevation m �0.1 10 21.1 24.8 36 78.7

zmax m 1 3.2 5.6 8.1 10.5 38.2

zmean m 0.3 1.7 2.7 3.6 4 15
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learning model, U-net32-DEM, was the largest model, initiated
from pretrained weights and trained using the largest DEM
grid buffer size (100%). This model had an average MAE of
2.15 m on the test set (1.75 m on the validation set and
1.38 m on the entire dataset). This is a relative improvement
of 45% on the validation set, compared to the BaselineCubic.
Performance metrics (MAE, RMSE, and rcorr) calculated for
each lake indicate that the model performed well, with most
lakes having low MAE and RMSE combined with high rcorr
and good agreement between predicted and observed average
lake bottom elevations for the test set (Fig. 4).

Model experiments
Increasing the size of the DEM grids improved performance

for all U-net models (Fig. 3), but the improvements were
minor (2.3% relative improvement from 33% to 100% for
U-net32-DEM). Performances improved when increasing the
model size (20.2% relative improvement from U-net4-DEM to
U-net32-DEM using the 100% sized DEM grids). Finally, using
pretrained model parameters also improved performance
(average MAE of 2.96 and 1.93 m for all U-netX-Random and
U-netX-DEM type models, respectively). The pretraining proce-
dure involved simulating data and training the neural network
to interpolate lake-shaped holes in DEM grids. During pre-
training, models approached convergence after 1000 epochs,
after which improvements were minor (Supporting Informa-
tion Fig. S2). While U-net models with pretrained parameters

performed slightly better, they also converged much more
quickly than models with random initialization (Supporting
Information Fig. S3), suggesting that pretraining is suitable
when the amount of ground truth data is sparse.

Visual perception of lake bathymetry
The comparison between baseline methods and the

suggested deep learning approach shows that the latter’s per-
formance was superior in terms of MAE aggregated per lake.
More importantly, the predicted lake bathymetry is much
more realistic than the BaselineCubic interpolation (Fig. 5).
Lake bathymetry predicted from BaselineCubic suffers from
interpolation artifacts that require further postprocessing, for
example, applying filters or manual editing to remove arti-
facts, on a lake-by-lake basis. Predictions from the U-net
models do not suffer from these problems as there is good
agreement between the observed and predicted bathymetries,
which is essential for applications beyond estimating volume,
zmax, or zmean. Per pixel predictions generally corresponded
well with ground truth for most lakes in the test set; however,
a few lakes were seemingly more difficult with the model fail-
ing to provide good predictions (Supporting Information
Fig. S4). For the two lakes in the test set with the highest MAE,
lake depths predicted using the U-net model were either
strongly overestimated (Lake Halle), despite being surrounded
by steep terrain, or underestimated (Lake Glenstrup;
Supporting Information Fig. S5).

Fig. 3. Validation set (n = 31) performance (white; mean absolute error) of four baseline approaches for interpolation and U-net models of four sizes (U-
net4, U-net8, U-net16, U-net32) initiated at random (U-netX-Random) or using pretrained parameters (U-netX-DEM) on the three buffer sizes of digital eleva-
tion model cutouts (33%, 66%, and 100%). Performance on all observations is also shown for the baseline methods, which do not require supervised
training (gray; n = 153).
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Discussion
Lake bathymetric maps

We have shown that a widely used deep learning architec-
ture, the U-net, can be trained to successfully predict lake
bathymetry solely from the topography of the surrounding
terrain. The suggested deep learning approach improves pixel-
wise accuracy and produces realistic and ready-to-use bathy-
metric maps for unvisited lakes without further post-
processing. Predictions require only a DEM grid and lake
shoreline, both of which are available on a global scale as
remote sensing products enabling large scale applicability
(Abrams et al. 2020). However, optimal performance in other
geographical regions with differing landscape history likely
requires fine-tuning with local data. Furthermore, because the
U-net architecture provides predictions for each pixel with
input and output grid dimensions left unchanged, resizing the

input grid before or after prediction is unnecessary, thus
maintaining the geospatial resolution and avoiding potential
interpolation artifacts. We also demonstrated the usefulness
of pretraining using simulated data, which overcomes the lack
of large amounts of labeled data. The presented approach to
predict bathymetry is likely insufficient for individual lakes if
high local accuracy is required. However, for collections of
lakes, upscaling of depth-dependent processes can be
improved (Cael and Seekell 2022).

Traditionally, important lake morphometry variables such
as volume, zmax, and zmean have been predicted by empirical
models using lake surface area and eventually elevation range,
slope, or other topographical metrics in a buffer zone around
the lake (Kalff 2002; Sobek 2011; Messager et al. 2016). In
this study, zmax and zmean derived from the predicted bathy-
metric maps were in good agreement with the ground truth;

Fig. 4. Performance of the best deep learning model (U-net32-DEM) on the test set (n = 31). Performance metrics are calculated using ground truth and
predicted lake bathymetry elevations per lake. (a) MAE. (b) RMSE. (c) Pearson product–moment correlation coefficient. (d) Mean predicted vs. observed
lake bottom elevations. The dotted line shows the 1 : 1 relationship.
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however, the spread for zmax were larger and zmax tended to be
underestimated at higher values (Supporting Information
Fig. S6). Poorer performance for lake morphometry variables
was expected, as the model is trained to minimize pixel-wise
error. While modeling of lake-level morphometric variables is
sufficient for some applications, others require bathymetric
maps, for example, for analyses of the distribution and bio-
mass of submerged macrophytes (Duarte and Kalff 1986; Leh-
mann 1998), greenhouse gas emissions (Li et al. 2020), and
extent of anoxia (Deeds et al. 2021). For such applications,
having bathymetric maps available enables improved quantifi-
cation of such processes on regional to global scales.

Predicting lake bathymetry
Predictions may deviate from ground truth for several rea-

sons, including sediment deposition and anthropological
effects such as excavation. Although sediment deposition over
time reduces lake depths (Downing et al. 2008), these changes
are relatively minor. However, the variation between lakes
might be more pronounced due to differences in system
hydrology, productivity, morphometry, and wind exposure
(Håkanson 1977; Blais and Kalff 1995; Anderson et al. 2020).
Even so, most lakes analyzed here have a very similar history,

as they result from processes occurring during the most recent
glaciation.

Recent studies have leveraged satellite imagery to predict
lake and coastal bathymetry using analytical and empirical
approaches (Gao 2009; Dörnhöfer and Oppelt 2016). While
such techniques tend to yield good predictive performance,
their use is limited to shallow, low-turbidity systems. Some of
these limitations also hold for LiDAR methods, which are
increasingly used for bathymetric applications due to higher
accuracy and lower workload associated with data collection,
for example, compared to manual echo sounding (Abdallah
et al. 2013).

By contrast, the lakes investigated here are susceptible to
high turbidity as they are generally nutrient-rich and shallow,
resulting in a dominance of phytoplankton and re-suspended
sediment particles (Kristensen et al. 1992; Martinsen
et al. 2022). Using a DEM to predict lake bathymetry over-
comes the limitations of approaches that are restricted by high
light attenuation in water columns. However, it relies on the
assumption that similar processes have formed bathymetry
and topography of the surrounding terrain. Given our success-
ful application, we find this assumption reasonable in a
Danish setting, where the landscape is heavily influenced
by processes occurring during the most recent glaciation

Fig. 5. Three-dimensional representations of lake bathymetric maps colored relatively by depth ranging from shallow (light blue) to deep (dark blue).
Examples of ground truth (a, d, g) and predicted using the best deep learning model (b, e, h; U-net32-DEM) and simple cubic interpolation (e, f, i;
Baselinecubic) from three lakes. The first row is Lake Almind (area = 52.7 ha and zmax = 21.1 m), the second row is Lake Hampen (area = 72 ha and
zmax = 12.9 m), and the third row is Lake Kaje (area = 25.7 and zmax = 4 m). Lake bathymetry elevations are exaggerated by a factor of 10 to improve
visualization.
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(Houmark-Nielsen 2011), though this might not be the case in
other geographical regions. Two recent studies have also used
a DEM to predict bathymetry: Zhu et al. (2019) progressively
determined lake depth from the shoreline based on the edge
slope, and, similar to here, Hosseiny (2021) applied a U-net to
predict the extent and depths in Utah’s Green River but relied
on both a DEM and hydrological model outputs. Remote sens-
ing imagery and DEM grids complement each other regarding
strengths and weaknesses and have been used extensively to
determine lake volume fluctuations and estimate hydro-
graphic relationships (Dörnhöfer and Oppelt 2016; Schwatke
et al. 2020) but have also been found to improve the predic-
tion of lake bathymetry (Getirana et al. 2018). It is straightfor-
ward to combine the DEM grids with additional data in the
U-net model, e.g., widely available remote sensing imagery, or
even soil type, which likely affects bathymetry on longer time
scales (decades to centuries). The use of deep learning thus
appears to be an attractive option for predicting the bathyme-
try of aquatic habitats in general.

Deep learning
For this analysis, we designed a pretraining procedure that

proved to have several advantages. Pretraining improved
model performance, especially for the smaller models, but not
by a large margin. However, models initialized from pretrained
parameters did converge much more quickly. As expected,
predicting lake bathymetry is very similar to predicting miss-
ing data in DEM grids in general. This suggests that pretrained
models can be used as a starting point and fine-tuned to pre-
dict lake bathymetry in other regions, other aquatic habitats,
or elevation in areas veiled by forest canopies or buildings,
and thus with unknown ground elevation. The ability to per-
form model pretraining highlights another advantage of deep
learning, also known as transfer learning: trained models can
be fine-tuned on new datasets using less labeled data. We
expect that the advantages of pretraining decreases with
increasing availability of diverse training data.

In this study, we used a dynamic buffer distance, scaled to
the lake surface area, to extract a zone of surrounding terrain
believed to influence lake bathymetry. This procedure is simi-
lar to Heathcote et al. (2015) and others (Sobek 2011), who
found that the predictive performance of volume and zmax

decreased when increasing the buffer distance. In the present
study, the scaling of the buffer zone only had minor influence
on the prediction of lake bathymetry. The different findings
are likely a consequence of the applied methodology. The con-
volutional neural networks used here are likely superior for
extraction of local landscape features as opposed to manually
defining and extracting global features (i.e., slope or elevation)
in a buffer zone as done traditionally. In general, the deep
learning approach was robust to changes in data (buffer dis-
tance) and model size, that is, beyond the smallest model,
U-net4-DEM, improvements in model performance were minor.
We used a DEM with a resolution of 10 m, which is probably

sufficient for the medium-large lakes in our dataset; however,
increasing the number of high-quality bathymetric maps for
small lakes and the DEM resolution provides an opportunity
to drastically increase the number of applicable lakes using
the methods presented here.

Conclusions
Lack of bathymetric data or using morphometric features,

for example, volume, zmean, or zmax, can introduce uncertainty
when quantifying depth-dependent processes in lakes. Dedi-
cated surveys of one or a few lakes can overcome this limita-
tion, but this is not an option for large collections of lakes.
Here, we have described a deep learning model to predict
bathymetry relying only on shoreline and elevation data. In a
setting with high requirements of high accuracy on one end,
obtained by either in-situ measurements or, if possible, remote
sensing products with site-specific calibrations, and simple
interpolation or geometric shape assumptions on the opposite
end, the approach described here falls somewhere in between
in terms of the trade-off between accuracy, effort, and data
requirements. When possible, bathymetry should be included
when quantifying depth-dependent processes and properties
ranging from the distribution of organisms to greenhouse gas
emissions in lakes.

Data availability statement
Scripts and models used for the analysis are available

from an online repository (https://doi.org/10.17894/ucph.
500985a8-6d15-41bd-827a-c2181167cb3f). The repository
contains a notebook and example data that demonstrate
the model’s use. The digitized lake bathymetry data are not
publicly available. However, the paper maps from which
the digitized data were created are freely available (https://
historiskekort.dk/?kortvaerk=Indsøkort). The national DEM
and lake polygons are freely available from the sources
cited in the main text.
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