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• Lake water quality can be predicted with
machine learning and geospatial predic-
tors.

• Buffer zone geomorphology metrics are
predictors of eutrophication related vari-
ables.

• Landscape history and catchment soil type
are influential on alkalinity and pH.

• Lake surface area is a master variable with
strong influence on pH, color, and pCO2.

• National upscaling can be improved using
water quality estimates for >180.000
lakes.
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Lakes provide essential ecosystem services and strongly influence landscape nutrient and carbon cycling. Therefore,
monitoring water quality is essential for the management of element transport, biodiversity, and public goods in
lakes. We investigated the ability of machine learning models to predict eight important water quality variables
(alkalinity, pH, total phosphorus, total nitrogen, chlorophyll a, Secchi depth, color, and pCO2) using monitoring
data from 924 to 1054 lakes. The geospatial predictor variables comprise a wide range of potential drivers at the
lake, buffer zone, and catchment level.We compared the performance of nine predictivemodels of varying complexity
for each of the eight water quality variables. The best models (Random Forest and Support Vector Machine in six and
two cases, respectively) generally performed well on the test set (R2 = 0.28–0.60). Models were then used to predict
water quality for all 180,377 mapped Danish lakes. Additionally, we trained models to predict each water quality
variable by using the predictions we had generated for the remaining seven variables. This improved model perfor-
mance (R2 = 0.45–0.78). Overall, the uncovered relationships were in line with the findings of previous studies,
e.g., total nitrogen was positively related to catchment agriculture and chlorophyll a, Secchi depth, and alkalinity
were influenced by soil type and landscape history. Remarkably, buffer zone geomorphology (curvature, ruggedness,
and elevation) had a strong influence on nutrients, chlorophyll a, and Secchi depth, e.g., curvature was positively
related to nutrients and chlorophyll a and negatively to Secchi depth. Lake area was a strong predictor of multiple
variables, especially its relationship with pH (positive), pCO2 (negative), and color (negative). Our analysis shows
that the combination of machine learning methods and geospatial data can be used to predict lake water quality
and improve national upscaling of predictions related to nutrient and carbon cycling.
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1. Introduction

Lakes and wetlands provide a diverse range of essential ecosystem
services, e.g., biodiversity, carbon sequestration, food production, water
supply, and recreation (Janssen et al., 2021; Peterson et al., 2003). Lakes
only cover approximately 3 % of the global surface area (Pekel et al.,
2016), nevertheless, lakes – and small lakes in particular – have dispropor-
tionately high greenhouse gas (GHG) emissions of CO2 and CH4 (Holgerson
and Raymond, 2016) and support high biodiversity (Biggs et al., 2017).
Freshwater habitats face multiple threats due to human activity, including
reclamation, habitat degradation, and eutrophication (Moreno-Mateos
et al., 2012; Riis and Sand-Jensen, 2001). Accurate predictions of essential
water quality variables in lakes across large scales and understanding the
relationships with important drivers can pave the way for better manage-
ment strategies (Read et al., 2015). Furthermore, the ability to make
local, lake-level predictions may reduce the uncertainty associated with
the upscaling of GHG emissions (Martinsen et al., 2020a) and other impor-
tant processes. Here, we used country-level data to investigate the ability of
machine learningmodels to predict eight essential water quality variables –
alkalinity, pH, total phosphorus (TP), total nitrogen (TN), chlorophyll a,
Secchi depth, color, and the partial pressure of carbon dioxide (pCO2) –
from readily available geospatial data.

Several water chemical variables can be used to evaluate the state and
quality of freshwater ecosystems (Bhateria and Jain, 2016; Kalff, 2002).
These variables are routinely measured in monitoring programs in many
countries to determine the ecological quality and function of lakes. This is
especially the case for the major nutrients, nitrogen and phosphorus
(Stanley et al., 2019), which are closely connected to biodiversity
(Jeppesen et al., 2000), phytoplankton development (Kalff and Knoechel,
1978), GHG-emission (Beaulieu et al., 2019; Huttunen et al., 2001), and
water clarity (Jeppesen et al., 2000). The nutrient state influences lake
primary production and, in turn, the variation in pH and pools of inorganic
carbon species, e.g., pCO2 and alkalinity (Kragh and Sand-Jensen, 2018;
Trolle et al., 2012). The relationship between nutrients and production is
modulated by the amount of available light (Krause-Jensen and Sand-
Jensen, 1998), suspended particles, and colored dissolved organic
compounds (Kirk, 1994). Thus, an understanding of lake water quality is
obtainable from water samples and measurements of a restricted set of
lake variables. However, this approach does not scale well to larger regions
and unvisited lakes. High degrees of temporal and spatial variation inten-
sify the challenge of predicting water quality variables in lakes.

Lakes are influenced by their surroundings, both the immediate
surroundings (buffer zone) and the topographical area (catchment area,
watershed, basin, upslope area, etc.; the term catchment is used onwards)
that delivers water to the lake (Jeppesen et al., 1999; Staehr et al., 2012).
On its way to the lake as either surface water or groundwater, water chem-
istry is influenced by land use, geology, soil type, natural vegetation, and
human activity (Marx et al., 2017; Rapp et al., 1985; Read et al., 2015).
The strength of the relationship between lake chemistry and catchment
conditions is modulated by the speed at which water travels through the
landscape (Fraterrigo and Downing, 2008; Smits et al., 2017) and the influ-
ence of internal lake processes. The presence of streams may reinforce the
relationship between catchment and lake chemistry by offering efficient
transportation (Abell et al., 2011; Nielsen et al., 2012). The shape of the
catchment landscape can be described using geomorphological variables
that can be computed from a digital elevation model (DEM; Hengl and
Reuter, 2008) and is often used to predict quantities such as water occur-
rence (Lidberg et al., 2020) and soil composition (Hengl et al., 2014).

Several attempts have been made to quantify the relationship between
lake water quality and spatial catchment or buffer zone characteristics
(Nielsen et al., 2012; Toming et al., 2020). In-lake concentrations of the
major nutrients, nitrogen and phosphorus, increase with agriculture inten-
sity in buffer zones and catchments (Arbuckle and Downing, 2001; Taranu
and Gregory-Eaves, 2008). The ability to predict a major limiting nutrient
such as phosphorus prompts an expectation that closely related water
quality measures such as Secchi depth and chlorophyll a levels are
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predictable from similar sets of variables. Carbonate or silicate mineral
levels in the catchment are, as expected, strong predictors of the level of
chemical weathering products in streams and downstream lakes (Marx
et al., 2017). Similarly, pCO2 in streams is predictable from catchment
characteristics (Lauerwald et al., 2015; Martinsen et al., 2020a). However,
parallel relationships for inorganic carbon and nutrients in streams might
not be readily transferable to lakes, as the pronounced increase in residence
time and, consequently, higher influence of in-lake metabolism, may
modify the relationships (Hotchkiss et al., 2015; Martinsen et al., 2020b).
Potentially, some of this variation can be accounted for by including
variables related to lake bathymetry, which in turn may be related to the
slope and shape of the landscape in the buffer zone surrounding the lake
(Messager et al., 2016). Despite the expectation that a lake's water quality
and its buffer zone or catchment are closely connected, the relationships
are not simple and their effects might be outweighed by the pronounced
spatial and temporal variation. Furthermore, non-linear relationships and
interactions among predictor variables may challenge linear approaches
to assessing lake water quality.

Applying methods and models from the field of machine learning could
alleviate some of these problems (Olden et al., 2008). These models
are trained to minimize prediction error on new observations,
i.e., observations not used for training the model, with the goal of maximiz-
ing the ability of the models to generalize. They are well-suited for tasks
withmany observations and predictor variables and can handle complex re-
lationships and inter-correlation (James et al., 2013). The models can be
viewed as flexible, functional approximators that capture the relationships
between the response and predictor variables (Breiman, 2001). This ap-
proach contrasts with traditional statistical modeling, e.g., the family of lin-
ear models, where the functional relationships are specified upfront and
performance is assessed with the data that had been used to fit the model.

It could be argued that the complexity of somemachine learningmodels
may result in ‘black-box’ models. However, several techniques exist to
identify influential variables and assess their relationship with the response
variable, making machine learning models a tool for both improving gener-
alization and uncovering important drivers (Molnar, 2019). Therefore,
machine learning appears to be a tractable option for improving our ability
to predict lake water quality across a wide range of different lakes (Read
et al., 2015). Predictions of water quality for a national collection of lakes
may both yield estimates for unvisited lakes and act as a reference for
ongoing monitoring. That is, the predictions can be used as readily
available predictor variables in future modeling efforts of water quality,
large-scale nutrient and carbon cycling, and biodiversity (Amatulli et al.,
2020; Domisch et al., 2015; Shen et al., 2020).

In this study, we set out to test how well the levels of eight water quality
variables can be predicted using geospatial predictors and machine learning
models. This is done using lake monitoring data from up to 1054 Danish
lakes, collected during the last 20 years, as the response variables and a
large collection of readily available predictor variables at the lake, buffer
zone, and catchment scale. Specifically, we hypothesize that: 1) the predict-
ability of water quality variables can be improved by including a wider
range of predictor variables; 2) complex relationships between response
and predictor variables can be modeled using flexible machine learning
models; and 3) similar or closely connected water quality variables share im-
portant drivers. The overall aim is to produce a country-level dataset with
predictions of the eight water quality variables for all 180,378 Danish lakes.

2. Data and methods

2.1. Study region

We used water quality data collected as part of the Danish national
monitoring program to train machine learning models to use predictor
variables at the lake, buffer zone, and catchment level, and used these
models to make predictions for Denmark's 180,378 mapped lakes. Despite
Denmark's small area (approx. 43,000 km2), the lakes span a large gradient
in water chemistry due to the variable influence of the last glacial period



Table 1
Summary statistics of the eight water quality response variables part of the study.

Variable Unit Min. Q25 Median Mean Q75 Max. N

Alkalinity meq. L−1 0.0 1.1 2.3 2.3 3.3 10.9 999
Chlorophyll a μg L−1 1.0 12.3 27.9 44.6 52.7 1001.5 1046
Color mg Pt L−1 1.2 22.3 40.8 67.4 73.8 736.3 924
pCO2 μatm 58 892 1472 2289 2844 34,185 951
pH pH 3.5 7.5 8.0 7.7 8.3 9.3 1049
Secchi depth M 0.2 0.7 1.0 1.4 1.6 9.5 1054
Total nitrogen mg L−1 0.3 1.3 1.8 2.3 2.6 156.8 1052
Total phosphorus mg L−1 0.0 0.0 0.1 0.3 0.2 56.5 1050
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(Weichselian glaciation). At their maximum extent, glaciers covered only
parts of Denmark (Fig. 1), resulting in large differences in catchment
geology between the eastern (glacier-influenced) and western parts of the
country. This makes Denmark a suitable study area for investigating the
influence of catchment geology and land use on lake water quality and it
is representative of the lowland North-temperate regions. The mean annual
air temperature is 8.1 °C and annual precipitation is 704 mm (Fick and
Hijmans, 2017).

2.2. Water quality response variables

2.2.1. Data selection
We used publicly available data from the national surface water monitor-

ing program (MFVM and DCE, 2021) to calculate annual averages of eight
key water quality variables: Alkalinity, pH, total phosphorus and nitrogen,
chlorophyll a, Secchi depth, color, and pCO2. These eight variables were
selected because they are important for the ecological quality (nutrients,
chlorophyll a, Secchi depth, and color), involved in carbon cycling (pCO2,
alkalinity, and pH) or predictors of biodiversity (several). Furthermore,
measurements of these variables were available for a wide range of lakes
with good seasonal coverage. Color is affected by the quantity of humic
compounds or the ‘colored' fraction of the dissolved organic matter pool.
The water quality variables were measured using standard methods, and
pCO2 was calculated from alkalinity, pH, and water temperature using the
seacarb R-package (Gattuso et al., 2021). The investigated lakes generally
have high carbonate alkalinity (Table 1), which reduces the potential influ-
ence of organic alkalinity on the estimation of pCO2 (Abril et al., 2015; Liu
et al., 2020). To further reduce the potential bias, and similar to other studies
(Hastie et al., 2017), we excluded observations with pH below 5.4. However,
the data generally vary in both temporal and spatial sampling intensity, and
thus required some preprocessing to calculate a robust annual average for
each lake and response variable.

2.2.2. Interpolation and annual averages
We used data from a 20-year period (2000–2019). We used only

surface water samples (during water column stratification) or mixed
samples (no stratification). We calculated the monthly median for
each lake and month, excluding lakes with less than four monthly
values. To interpolate values for missing months, we fitted generalized
additive models (GAM) for each water quality variable. The term
‘month’ was modeled as a cyclic cubic spline to make December and
Fig. 1.Map ofDenmarkwith the location of the 1.054 lakes included in the analysis.
Lakes are colored by alkalinity and the stippled line identifies the maximum extent
of the Weichselian glaciation. Areas to the south-west of the stationary line
remained ice-free.
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January line up, with ‘lake’ as a random effect, using the mgcv R-
package (Wood, 2017, 2011). For the GAM analysis, the response vari-
ables were log10(x + 1) transformed. The model fits a global shape of
the intra-annual variation with a different intercept for each lake. All
models showed a good fit, with R2 values ranging from 0.56 to 0.96.
The fitted GAM were then used to fill the gaps in the annual time series.
Finally, we calculated the annual average for each response variable
resulting in data from 924 to 1054 lakes (1054 unique lakes; Table 1).
2.3. Catchment delineation

Wedelineated the topographical catchment of 180,377 lakes (one of the
country's 180,378 mapped lakes could not be delineated), including catch-
ments of the 1054 lakes whose water quality data were used in this study.
Lake polygons and streamlines for Danish lakes are publicly available
(SDFE, 2021). We used a publicly available high-resolution digital eleva-
tion model (DEM; 1.6 m resolution) based on LiDAR data from a national
survey conducted in 2007, with some hydrological corrections added sub-
sequently (SDFE, 2021).
2.3.1. DEM preprocessing
To ease the computations, we first delineated drainage sub-basins that

were then used as units for further hydrological processing. Sub-basins
were delineated based on an aggregated (10 m resolution) version of the
high-resolution DEM. The DEM was hydrologically corrected by
‘breaching’, which carves through obstacles to enable flow routing. This
contrasts with ‘filling’, which raises the elevation within depressions that
would otherwise impede flow routing (Lindsay and Creed, 2005). Follow-
ing this, sub-basins were labeled using the algorithm described in Barnes
et al. (2014a). The breaching and labeling algorithms are part of the the
RichDEM Python/C++ package (Barnes, 2016). The delineated sub-
basins were then merged iteratively with smaller neighboring sub-basins
using GRASS GIS (Neteler and Mitasova, 2013) and further enlarged
using a spatial buffer zone of 1000 m to avoid edge artifacts. This resulted
in 114 sub-basins and 164 islands for further hydrological processing.
2.3.2. Lake catchments
We split the high-resolution DEM based on the delineated sub-basins

and performed hydrological corrections by breaching as described above,
flat resolution (Barnes et al., 2014b), and, finally, assignment of flow direc-
tions (deterministic-eight method; O’Callaghan and Mark (1984)). These
methods are also part of the RichDEM library. The topographical catchment
for each lakewas delineated by identifying all grid cells that contributeflow
to the lake, using the NumPy and Numba Python libraries (Harris et al.,
2020; Lam et al., 2015). Finally, catchment polygons were simplified,
retaining approximately 10 % of their constituting points to speed up the
extraction of summary statistics. This geospatial analysis also relied on
other software libraries such as GDAL (GDAL/OGR contributors, 2021)
and the sf (Pebesma, 2018), exactextractr (Baston, 2021), and raster
(Hijmans, 2021) R-packages.
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2.4. Predictor variables

We extracted data for 132 predictor variables at the lake (L), buffer zone
(B), and catchment (C) levels from a wide range of geospatial data sources
(Table S1). The lake level includes attributes based on the lake polygons,
e.g., area and shoreline length. The catchment level includes summary
statistics of land use (Corine Land Cover: Bossard et al., 2000), geology
(Pedersen et al., 2011), geomorphology (DEM and digital surface model
derivatives, e.g., slope, aspect, and curvature (Horn, 1981; Zevenbergen
and Thorne, 1987), and climate (Fick and Hijmans, 2017). For each lake,
we also calculated summary statistics of geomorphological variables within
buffer zones of different distances (50, 100, and 250 m). We expect that
catchment characteristics are useful for predicting lake water quality,
though this relationship might be influenced by, in this case, unknown
lake bathymetric attributes such as volume. For this reason, we have
included buffer-zone geomorphological variables, which can be expected
to correlate with lake bathymetry (Messager et al., 2016).

2.5. Predictive modeling

We used nine machine learningmodels (Table S2) to predict each of the
eight water quality variables from the lake, buffer zone, and catchment
characteristics. The models vary in complexity and their ability to approxi-
mate the functional relationship between the water quality variables and
geospatial characteristics. Importantly, we assessed eachmodel's predictive
performance on unseen data using the R-squared (R2), root-mean-squared-
error (RMSE), and mean-absolute-error (MAE) metrics. Therefore, the data
were split randomly into training (80 %) and test (20 %) sets, where the
training set was used for model selection and training, and the test set
was reserved for the final assessment.

2.5.1. Preprocessing
We applied some preprocessing to both the response and predictor

variables. This is necessary to reduce distributional skewness and differences
in units that could affect model performance. Seven water quality response
variables were log10(x) transformed; the eighth, alkalinity, was log10(x +
1) transformed. For the predictor variables, we used median imputation to
fill a few (three observations in the training data) missing values, removed
near-zero variance variables, square-root transformed the catchment land
use and geology proportions, applied Yeo-Johnson transformation (Yeo and
Johnson, 2000), standardized variables to unit standard deviation, andfinally
removed predictor variables iteratively until the Spearman rank correlation
coefficient of all variable pairs were below 0.7. This left 50 out of the 132
candidate predictor variables (Table S1) for further analysis. The recipes R-
package was used for preprocessing (Kuhn and Wickham, 2021).

2.5.2. Model selection and training
We compared the predictive performance of nine machine learning

models: featureless (AVG), linear model (LM), k-nearest neighbor (NN:
Beygelzimer et al., 2019), regression tree (TREE: Therneau and Atkinson,
2019), partial least square regression (PLSR: Liland et al., 2021), elastic
net (ELAST: Friedman et al., 2010), neural network (NNET: Venables and
Ripley, 2002), support vector machine (SVM: Meyer et al., 2021), and
random forest (RF: Wright and Ziegler, 2017). For each response variable,
we compared the performance of the nine models using 5-fold cross-
validation repeated 5 times (outer loop) to select the best model for further
analysis. Many of themodels depend on hyperparameter tuning for optimal
performance (Table S2). A tuning search was performed for each cross-
validation split using 4-fold cross-validation (inner loop) and a 30-
iteration random search, and the best set of hyperparameters was then
used to fit the model. Following model selection, the best-performing
modelwas trained on the entire training set using the samehyperparameter
tuning procedure as for the model selection, except that the number of
random search iterations was increased to 100. The final models were
then evaluated on the test set and used to make predictions for all lakes
in Denmark.
4

2.5.3. Model interpretation
To identify the important predictor variables and the functional

relationships between response and predictor variables, we computed the
permutation variable importance (normalized to 0–1 range) and accumu-
lated local effects (ALE) using the iml R-package (Molnar et al., 2018).
Furthermore, we visualized the relationship between the permutation
variable importance scores for each response variable using principal
components analysis (PCA). Machine learning models were trained and
evaluated using the mlr R-package (Bischl et al., 2016).

2.5.4. Using predictions as predictor variables
Thus far, the eight water quality variables have been treated separately.

However, the water quality predictions, now available for all Danish lakes,
provide a straightforward way to upscale related lake variables. To provide
an example of such usage and a performance estimate, we used 5-fold cross-
validation to evaluate the performance of an RFmodel that incorporated all
observations of the eight water quality variables, along with the predicted
values of the remaining seven. The same tuning procedure as in the
model selection analysis was used.

2.6. Data availability

All analysis was performed in R version 4.1 (R Core Team, 2021) or
Python version 3.8 (Van Rossum and Drake, 2011). All raw data are
publicly available from the sources cited in the main text. All scripts used
for the analysis and the resulting data products (e.g., lake catchments,
predictions, and models) are available from an online repository (http://
doi.org/10.17894/ucph.a344db4b-3d71-4a48-8293-a17b4ccf0e9d).

3. Results

3.1. Danish lakes and catchments

180,378Danish lakes have beenmapped, covering a total area of 713 km2

(1.66 % of the national area). Small lakes <1 ha make up 97.5 % of the total
(Fig. 2 A). Mean and median lake surface areas are 3951 m2 and 495 m2

respectively. The catchments of Danish lakes cover a non-overlapping area
of 31,811 km2 (73.8 % of the national area) with a mean and median area
of 1.1 km2 and 0.016 km2, respectively (Fig. 2 B). Thus, the catchment area
is generally much larger than the lake surface area, with a mean and median
lake to catchment ratio of 0.47 and 0.04, respectively (Fig. 2 C).

3.2. Water quality variables

Data for eightwater quality variables for 924–1054Danish lakes cover a
wide range of conditions in terms of nutrients, inorganic carbon, and light
attenuation (Table 1). These lowland lakes are generally nutrient-rich
because of the high population density and intense agricultural land use
in the country. However, a sampling bias in the lakes that are included in
the analysis results in medium- and large-size lakes being overrepresented
(Fig. 2 A). Further, there is a pronounced variation in lake alkalinity from
the western to eastern parts of Denmark, a consequence of the last glacial
period, which left the southwestern part free of ice cover and subject to
sand deposition by rivers (Fig. 1). The eight water quality variables are
highly inter-correlated (Table S3), as expected.

3.3. Predicting lake water quality

3.3.1. Model selection
For each of the eight response variables, we compared the performance

of nine predictive models ranging from very simple (AVG and LM) to more
complex and often better-performing models. For six response variables,
the best-performing model was RF, with SVM having the best performance
for the remaining two variables (pH and color; Fig. S1). Generally, all
models performed well on the test set, explaining 28–60 % of the variation
(R2; Table 2).

http://doi.org/10.17894/ucph.a344db4b-3d71-4a48-8293-a17b4ccf0e9d
http://doi.org/10.17894/ucph.a344db4b-3d71-4a48-8293-a17b4ccf0e9d


Fig. 2. Density distributions of A) surface area, B) catchment area, and C) the ratio
of the lake to the catchment area for 180,377 Danish lakes. In A, the green bars
show the distribution of the 1054 lakes that were part of the analysis. One
observation is removed in panel C to improve the visualization.
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3.3.2. Water quality predictions for Danish lakes
We used the trained models to make predictions for 180,377 Danish

lakes (Fig. 3). This is straightforward because the predictor variables are
readily available from geospatial databases. The density distributions of
the predictor for some response variables differ from those of the observa-
tions used to train the models, which is likely a consequence of the bias
in sampling of a higher proportion of medium- to large lakes, relative to
small lakes (Fig. 2 A). This is the case for pCO2, pH, color, and Secchi
depth, for which the predicted national average (Fig. 3) is much different
from the observations (Table 1) because the many small lakes are predicted
Table 2
Predictive performance on the test set of the best performing machine learning
models as root-mean-squared-error (RMSE), mean-absolute-error (MAE), and
variance explained (R2) for eight water quality variables (log10-transformed).

Variable RMSE MAE R2 N

Alkalinity 0.142 0.104 0.60 195
Chlorophyll a 0.396 0.319 0.28 211
Color 0.285 0.204 0.55 179
pCO2 0.288 0.209 0.36 187
pH 0.036 0.024 0.50 210
Secchi depth 0.227 0.167 0.38 211
Total nitrogen 0.207 0.160 0.33 211
Total phosphorus 0.431 0.329 0.38 211
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to have higher pCO2 and color along with lower pH and Secchi depth. The
difference is less pronounced for TP, TN, alkalinity, and chlorophyll a,
which are not affected by lake size to the same degree.

3.3.3. Using water quality predictions to train new models
In addition to generating knowledge that is immediately useful in

nature management, model predictions can be used in future national
modeling efforts. To demonstrate this, we computed cross-validated
model performance using observations of each of the eight water quality
variables as the response variable, with the predictions of the remaining
seven variables as the predictors (Table 3). For all variables, the mean
performance was superior to that of models that only use geospatial
variables at the lake, buffer zone, and catchment level. This is a result of
the interdependence between the water quality variables, which often are
highly correlated (Table S3). Moreover, it indicates that the trained predic-
tive models must capture relevant relationships for each of the eight water
quality variables and not only consider them individually. This in turn
improves the performance when the predictions are subsequently used as
part of new modeling efforts.

3.4. Drivers of lake water quality

Fifty predictor variables were used to train the predictivemodels. These
variables directly or indirectly cover a range of effects and interactions at
the lake, buffer zone, and catchment level. The influence of each predictor
variable on each of the eight response variables generally differs widely,
but some commonalities are present for similar variables such as nutrients
(Fig. 4). Generally, the incorporation of several predictor variables
enhanced the performance of the predictive models. The exception is the
pCO2 levels, which was reliably and consistently predicted on the basis of
a single predictor variable: lake area. Among the top ten predictors for
the water quality variables, the major categories of predictor variables are
present, i.e. geomorphology (curvature and elevation), land use (non-irri-
gated arable land and coniferous forest), geology (clayey till and sandy
deposits), and lake metrics (area, distance to the coastline, distance to
main stationary line of ice cover during the last glaciation), and the three
spatial levels (lake, buffer zone, and catchment).

3.4.1. Permutation variable importance
In general, many of the predictor variables expected a priori to be impor-

tant are present among the most important variables (Fig. 4). This is the case
for lake area and many of the catchment soil and land use variables, which
previous studies suggested would be promising predictor variables. Perhaps
more surprising is the apparent importance of geomorphological variables
at both the buffer and catchment levels. These variables may influence lake
water quality through both direct (e.g., soil erosion) and indirect pathways
(e.g., buffer zone geomorphology as related to lake bathymetry).

For alkalinity and pH, clayey till, the distance to the main stationary
line, and coniferous forest for pH, are important predictors, emphasizing
the influence of the last glaciation on inorganic carbon chemistry in Danish
lakes (Fig. 1). Lake area, catchment forest cover, and presence of freshwater
deposits were important predictors of color. For response variables directly
related to eutrophication (TP, TN, Secchi depth, and chlorophyll a), buffer
zone curvature and elevation, unexpectedly, were among the most impor-
tant predictors; for Secchi depth, ruggedness also was a surprisingly impor-
tant predictor. Less surprisingly, agriculture (non-irrigated arable land), ice
cover during the last ice age, catchment geology (clayey till and sandy
deposits), and landscape position (distance to the coastline) were all impor-
tant predictors (Fig. 4).

3.4.2. Response for the most important predictors
The average influence of each predictor variable along a range of values

was examined with ALE. From the response curves of the most important
variables (Fig. 5), it is evident that the trained predictive models can cap-
ture a range of relationships, with the RF appearing more step-like because
it is an ensemble of regression trees, in contrast to the more linear



Fig. 3. Density distributions of eight water quality variables in 180,377 Danish lakes predicted using the best performing machine learning models. Vertical lines show
distributional summary statistics. A total of 37 observations were removed to improve the visualization of distributions. Ordinate axes are in log-units.
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relationship with SVM (color and pH). For many of the predictor variables,
the relationships, either positive or negative, are similar to a priori expecta-
tions. Alkalinity increases with the proportion of clayey till in the catch-
ment and the distance to the main stationary line and, thus coverage by
glaciers during the last glaciation (Fig. 1). Color decreases with lake area
and increases with the proportion of mixed forest in the catchment. For
pCO2, the dominant relationship is the negative relationship with lake
area, and consequently, its relationships are positive with color and
Table 3
5-fold cross-validation performance of an RF model trained using observations of
each of the eight water quality variables (log10-transformed) as the response
variable and the predicted values of the remaining seven as the predictor variables.
The root-mean-squared-error (RMSE), mean-absolute-error (MAE), and variance
explained (R2) are reported as mean (±SD).

Variable RMSE MAE R2

Alkalinity 0.132 (±0.008) 0.099 (±0.006) 0.66 (±0.055)
Chlorophyll a 0.313 (±0.034) 0.242 (±0.026) 0.544 (±0.069)
Color 0.262 (±0.011) 0.196 (±0.008) 0.62 (±0.071)
pCO2 0.272 (±0.019) 0.201 (±0.009) 0.449 (±0.058)
pH 0.028 (±0.003) 0.017 (±0.002) 0.778 (±0.031)
Secchi depth 0.182 (±0.012) 0.141 (±0.008) 0.61 (±0.026)
Total nitrogen 0.182 (±0.015) 0.134 (±0.009) 0.472 (±0.07)
Total phosphorus 0.348 (±0.015) 0.26 (±0.01) 0.574 (±0.07)
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negative with pH. For the eutrophication-related variables, the influence
of buffer zone geomorphology (e.g., curvature and elevation, and rugged-
ness for Secchi depth) is perhaps the most striking, with a positive relation-
ship with TP, TN, and chlorophyll a.

3.4.3. Similarities in important drivers of water quality
As highlighted above, there are similarities in the permutation variable

importance among the eight response variables. This is not surprising since
there are significant correlations among the eight variables (Table S3). The
similarities can be visualized using PCA (Fig. 6), showing that the
eutrophication-related variables generally group together, near Secchi
depth and pCO2, but distanced from pH, alkalinity, and color.

4. Discussion

4.1. Predictability of water quality variables

From a large candidate set of 132 predictor variables, we used 50 to
train predictive models for eight water quality variables. We selected read-
ily available predictor variables, so that predictions could be made for all
current and potential future lakes. Some variables belong to well-defined
categories, e.g., land use, geology, or geomorphology, while others place
the lake in the landscape and account for spatial autocorrelation,
e.g., distance to the coastline, distance to the main stationary line of the



Fig. 4.The permutation variable importance (normalized to 0–1 rangewith 1 and 0 being themost and least important respectively) of 50 predictor variables calculated using
the best performing machine learning model for each of the eight water quality variables. Variables are determined at the levels of the lake (L), catchment (C), and buffer
zones (B; e.g., B100 is a 100 m wide buffer zone surrounding the lake).
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long-gone glaciers (Hengl et al., 2018). The predictive performance ranged
frommoderate to strong, both regarding the accuracy as RMSE or MAE and
regarding the proportion of explained variance as R2. Thus, this study
demonstrates the ability of machine learning models to yield good predic-
tions of several lake water quality variables from readily available data on
lake, buffer zone, and catchment geospatial variables (Fig. S2). This result
is a significant improvement over previous approaches. Many existing
models use geospatial variables to predict water quality by predicting the
concentrations of nutrients like TN and TP (Stanley et al., 2019), but few
have attempted to generate predictions for pCO2, pH, and alkalinity. This
motivated us to include a broader range of important lake variables and
evaluate the relationships among them.

Multiple studies have used landscape characteristics to predict lake
water quality, but their accuracy and the proportion of variance explained
has generally been low (Gémesi et al., 2011; Nobre et al., 2020). Comparing
the performance of various models may be difficult because they use
7

different predictor variables and because some studies evaluate their
model's performance on the basis of data used to train the model, while
others use an independent test set. For TN and TP, the R2 values reported
here are similar to previous studies of Denmark (Nielsen et al., 2012) and
climatically similar Estonia (Sepp et al., 2022). For pCO2, other studies
have achieved similar R2 values using mainly lake variables instead of the
more indirect landscape drivers (Humborg et al., 2010; Lapierre et al.,
2017). In general, the framework presented here yielded good performance
compared to existing studies, despite not using anymeasured lake chemical
variables as predictors. This is a great step forward because the data can be
upscaled efficiently, whereas models that are dependent on data from
individual lakes cannot.

The fact that data from catchments and buffer zones are good predictors
of lake chemistry is highly promising, though not a surprise (Arbuckle and
Downing, 2001; Gémesi et al., 2011; Nobre et al., 2020). Previous studies
have noted that the degree of lake-catchment interaction depends on the



Fig. 5. Influence of the fourmost important predictor variables assessed usingAccumulated Local Effects (ALE) for each of the eightwater quality response variables. Lines are
colored according to their ranked importance, with 1 being the most important.
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fluvial connectivity of the catchment, i.e., how efficiently water and
elements are transported within and to the lake system (Fraterrigo and
Downing, 2008; Read et al., 2015). In an effort to accommodate this, we
included variables describing lake–stream connectivity but these were
found not to be of great importance. However, the distance to the coastline
and terrain elevationwere important for several water quality variables and
should capture some aspects of the lakes' position in the fluvial network
(Olden et al., 2001). This could be developed further by applying network
analysis and thereby emplace the lake in the fluvial network (Jones, 2010).

While the topographical catchment units are straightforward to delin-
eate, they are also prone to error (Oksanen and Sarjakoski, 2005). Errors
may be due to inaccurate catchment delineations or water transport that
does not follow the terrain surface (Lindsay, 2016). This may especially
be the case in flat regions like Denmark, which has a high degree of subsur-
face water transportation via, e.g., sewerage, drainage, or groundwater.
The use of a very high-resolution DEM and the applied preprocessing
methods should alleviate some of the issues associated with flow routing
in flat landscapes (Lidberg et al., 2017).
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4.2. Drivers of lake water quality

We expected catchment land use, geology, and soil composition to be
influential predictor variables of water quality. For several of the response
variables, the predictivemodels also uncovered such relationships but addi-
tionally found geomorphology at the buffer and catchment level to be of
particular importance. Especially for eutrophication-related variables TN,
TP, Secchi depth, and chlorophyll a, the influence was apparent. Generally,
the water-quality variables were highly inter-correlated (Table S3) and in
line with results presented in numerous studies. One exception is pCO2,
that has been considered to a lesser extent in this context, and shows the
strongest correlations to color and pH, but exhibited no apparent relation-
ship to TN and TP. The similarities among important predictor variables
between the eight water quality variables were examines using PCA. The
water quality variables directly related to eutrophication, TN, TP, and
chlorophyll a, group together, with pCO2 and Secchi depth slightly
distanced. This is expected, as pCO2 and Secchi may not be directly influ-
enced by the drivers of eutrophication but are affected by attributes such



Fig. 6. Principal components analysis of the eight response variables based on the
permutation variable importance calculated for 50 predictor variables. The water
quality variables are shown in a three-dimensional space using the first three
principal components (PC) with the variance explained by the respective
component shown in parenthesis.
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as lake area. Further distanced from these are alkalinity, pH, and color,
which differ to a much larger degree in their drivers.

For alkalinity, the strong impact of the last glaciation was pronounced,
and as expected shared influential predictors with pH (Rebsdorf et al.,
1991), which was positively influenced by lake area and negatively by
coniferous forest cover. Other studies have also found an influence of conif-
erous forest cover on lake pH (D’Arcy and Carignan, 1997). The positive
influence of surface area on pH, and the inverse for pCO2, is likely related
to the higher gas transfer velocity (Holgerson et al., 2017), the decreasing
influence of terrestrial organic matter, and CO2 supersaturated groundwa-
ter inputs relative to lake volume associated with increasing lake area
(Martinsen et al., 2020b). The overshadowing influence of lake area on
pCO2 is somewhat surprising, given that landscape processes and geomor-
phology are important predictors of pCO2 in streams (Martinsen et al.,
2020a; Rocher-Ros et al., 2019). It is likely that the increased residence
time and seasonal stratification-mixing dynamics (Weyhenmeyer et al.,
2012), even in the shallow Danish lakes, overrides these effects on surface
water pCO2. For color, the negative influence of lake area and positive influ-
ence of forest cover is in line with previous studies in Danish lakes and the
higher input of terrestrial humic organic material relative to lake water
volume (Sand-Jensen and Staehr, 2009, 2007).We also observed a negative
relationship between color and terrain slope, which has been reported by
other studies as well (Rasmussen et al., 1989). The success of terrain
slope as a predictor of terrestrially influenced carbon pools, e.g., color,
DOC (D’Arcy and Carignan, 1997), and pCO2 (Martinsen et al., 2020a), is
likely due to the influence of terrain slope on soil thickness and organic
matter accumulation. Jankowski et al. (2014) found that the quality of
organic matter in streams, expressed as the temperature sensitivity of respi-
ration increased as catchment slopes became steeper, while the quantity of
organicmatter decreased. Thismay explain some of the observed variations
in the pools of dissolved carbon, as differences in substrate, and the degree
to which they have been exposed to microbial processing is influenced by
the transit time within the catchment. A steep catchment terrain also
impacts pCO2 directly, through higher gas exchange velocities (Wallin
et al., 2011), and the relative role of photochemical degradation of colored
dissolved organic matter during transit (Köhler et al., 2002).
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Geomorphological variables may influence lake nutrient variables
directly or indirectly. For example, soil erosion, which is directly influenced
by landscape geomorphology, land use, and soil type is known to be an
important delivery mechanism for phosphorus (Laubel et al., 2003).
Erosion of soil that contains particle-bound phosphorus is driven by physi-
cal forcing through precipitation and wind, and is particularly important in
regions with exposed soils and steep slopes (Grant et al., 1996; Kronvang
et al., 2007). Our finding regarding the influence of geomorphology on
chlorophyll a may be a result of its impact on TP, as these two variables
are highly correlated (Table S3). Furthermore, phosphorus is often the
limiting nutrient for phytoplankton development in lakes and thus an
important predictor of chlorophyll a and potentially Secchi depth
(Jackson et al., 2007; Jeppesen et al., 2000). The high importance of catch-
ment agriculture cover for TN is expected, as most nitrogen input to Danish
streams comes from agriculture-dominated catchments, whereas phospho-
rus inputs are generally dominated by point sources (Jeppesen et al., 1999)
and are very sensitive to soil erosion in steep terrain. Indirect effects of
geomorphology on lake nutrients are also likely, because buffer zone topog-
raphy is a good predictor of lake bathymetry (Messager et al., 2016; Sobek,
2011) and in turn TP, TN, chlorophyll a, and Secchi depth (Fee et al., 1996;
Qin et al., 2020).

The lakewater quality predictions produced in this study can also be used
to investigate the traditional water quality relationships of interest, e.g., the
relationships between chlorophyll a and TP and TN (Kalff, 2002). Our predic-
tions cover the nationwide range of environmental characteristics and lake
types which should provide an improved view of such relationships. The
slope between chlorophyll a and TN appears similar to those found in earlier
more restricted studies but appears to be lower for TP (Fig. S3). This could be
due to the presence of inflection points and non-linearities (Quinlan et al.,
2021) which is more likely when considering a much wider gradient in
lake sizes and nutrient conditions in the nationwide data. This could be fur-
ther promoted by the inclusion of small lakes which tend to have higher dis-
solved organic carbon and color levels (as also shown here) which may
restrict phytoplankton biomass and primary production (Sand-Jensen and
Staehr, 2009, 2007). Additionally, the relationships are modified by water
depth (e.g., euphotic depth: mixed depth) in a complex manner as light,
vertical mixing, and wind-induced particle resuspension may reach shallow
bottoms (Krause-Jensen and Sand-Jensen, 1998; Yuan and Jones, 2020).

4.3. Predictive modeling and large-scale investigations

Machine learning models, as opposed to traditional linear models, can
have several advantages. Their predictive performance can often be supe-
rior because they are sufficiently flexible to capture complex, non-linear
relationships and interdependencies that are present in monitoring data
(Read et al., 2015), and they scale well to many more observations
(Olden et al., 2008). Furthermore, the researchers do not define a priori
the functional relationship between the response and predictor variables,
a task that is more straightforward for experimental data but challenging
for a diverse range of predictors presented here (Breiman, 2001). A
model that can approximate the functional relationships may even reveal
new or surprising relationships (Read et al., 2015). However, the flexibility
of the models may also result in poor performance when extrapolating out-
side the range of predictor variables or new spatio-temporal domains, and
this possibility should be taken into account when evaluatingmodel perfor-
mance in an extrapolation setting (Meyer et al., 2018; Meyer and Pebesma,
2021). Consequently, while we are confident that equivalent datasets can
be assembled for other countries and regions, especially when considering
the availability of readily available data on elevation, land use, soil compo-
sition, etc. with near-global coverage (Amatulli et al., 2020; Hengl et al.,
2014), the model performances reported here is strictly valid only for
Denmark, the range of environmental conditions is so extensive that the
models should be applicable in many regions with a similar climate,
geology, and soil conditions.

In the present analysis, we only considered the spatial variation, that is,
we used multi-year aggregations of lake water quality, assuming that the
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inter-annual variation is low.We believe this is a reasonable assumption for
the 2000–2019 period in a Danish context, where lake water quality
improved markedly with the implementations of the water action plans in
1987, but has since slowed down (Kronvang et al., 2005). Including tempo-
ral variation in a predictive model could be advantageous for some use-
cases. Indeed, GAM models that interpolated monthly values captured
seasonal variation very well, suggesting that a spatio-temporal predictive
(forecasting) model also could perform well. Approaches that combine
machine learning models and process knowledge could result in further
improvements (Hanson et al., 2020).

As a secondary step in our analysis, we show that the water quality pre-
dictions can be used subsequently to train even better-performing models.
This highlights an advantage of considering multiple response variables
simultaneously and suggests that making predictions for all available
lakes, and not only for the lakes used for modeling, could be a suitable
direction for future studies. This is commonly done for variables that are
continuous in space, e.g., climate or soil type (Amatulli et al., 2020; Fick
and Hijmans, 2017; Hengl et al., 2014), and less so for discrete units such
as lakes. Adding additional water chemical response variables using the
existing monitoring data to create a collection of predictions for each lake
could provide exciting stepping stones for future upscaling exercises. How-
ever, monitoring data, as in Denmark, may contain biases. In our study as
well as others (Stanley et al., 2019; Wagner et al., 2008), small lakes were
undersampled, leading to biases in sample statistics that potentially influ-
enced model performance. The lack of studies of small lakes may result in
significant differences between sampled observations and large-scale
predictions of water quality variables where lake size is influential,
e.g., pH, pCO2, and color in this study. For pCO2, we found an approxi-
mately two-fold difference between the mean computed for observations
from monitoring data and the national predicted values, and, despite the
higher gas transfer velocity in larger lakes, this may have significant impli-
cations for carbon emission estimated over large geographical areas
(Holgerson and Raymond, 2016; Martinsen et al., 2020b).

4.4. Conclusions

A significant proportion of the variation in water quality between lakes
can be explained using geospatial predictor variables related to land use,
geology, geomorphology, and lakemorphometry. Some of the relationships
have previously been described, however, we present a surprisingly strong
influence of buffer zone geomorphology (curvature, elevation, ruggedness,
slope, etc.) on lake water quality. Eutrophication related variables share
many important predictor variables but some variables (e.g. pH, alkalinity,
and color) are ultimately driven by other processes, which appear in our
analysis when considering similarity between water quality variables
based on the contribution of important predictor variables. Furthermore,
we show that relationships between water quality and predictor variables
can be approximated using flexible machine learning models and, subse-
quently, the most important variables and their relationships can be identi-
fied. Thesemodels automate an otherwise error-prone step of the modeling
process, thereby improving predictive performance. The water quality pre-
dictions can be included as predictor variables in new models and, if avail-
able for entire regions, form the basis for improved large-scale estimates of
nutrient and carbon cycling by moving beyond estimates based on discrete
size classes. Additionally, the predictive models can be used to inform ap-
proaches to nature management by providing water quality estimates for
lakes, both existing and contemplated, with varying lake, buffer zone, and
catchment characteristics. Future studies should address how the temporal
dimension can be incorporated and the potential influence of biases associ-
ated with data from regional monitoring programs.
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